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Abstract

Graph representation learning is to learn universal node rep-
resentations that preserve both node attributes and struc-
tural information. When a graph is heterogeneous, the prob-
lem becomes more challenging than the homogeneous graph
node learning problem. Inspired by the emerging informa-
tion theoretic-based learning algorithm, we propose an unsu-
pervised graph neural network Heterogeneous Deep Graph
Infomax (HDGI) for heterogeneous graph representation
learning. By maximizing local-global mutual information,
HDGI eftectively learns high-level node representations that
can be utilized in downstream graph-related tasks. Experi-
ment results show that HDGI remarkably outperforms state-
of-the-art unsupervised graph representation learning meth-
ods on both classification and clustering tasks. By feeding
the learned representations into a parametric model, we even
achieve comparable performance in node classification tasks
when comparing with supervised end-to-end GNN models. A
full version of this paper can be accessed in (Ren et al. 2019).

Introduction

Traditional machine learning methods focus on the features
of individual nodes, which obstructs their ability to process
graph data. Graph neural networks (GNNs) for represen-
tation learning of graphs learn nodes’ new feature vectors
through a recursive neighborhood aggregation scheme (Xu
et al. 2019), which complete the fusion of node attributes
and structural information in essence. A rich body of suc-
cessful supervised graph neural network models have been
developed (Kipf and Welling 2017a; Velickovic et al. 2018;
You et al. 2018). However, labeled data is not always avail-
able in graph representation learning tasks. To alleviate the
training sample insufficiency problem, unsupervised graph
representation learning has aroused extensive research inter-
est. Most of the existing unsupervised graph representation
learning models can be roughly grouped into factorization-
based models and edge-based models. Factorization-based
models capture the global graph information by factoriz-
ing the sample affinity matrix (Zhang et al. 2016; Yang et
al. 2015; Zhang et al. 2016). Those methods tend to ignore
the node attributes and local neighborhood relationships.
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Edge-based models exploit the local and higher-order neigh-
borhood information by edge connections or random-walk
paths. Nodes tend to have similar representations if they are
connected or co-occur in the same path (Kipf and Welling
2017b; Duran and Niepert 2017; W. Hamilton and Leskovec
2017; Grover and Leskovec 2016). Edge-based models are
prone to preserve limited order node proximity and lack a
mechanism to preserve the global graph structure. The re-
cently proposed deep graph infomax (DGI) (Velickovi¢ et
al. 2019) model provides a novel direction that maximizes
the mutual information between graph patch representations
and the corresponding high-level summaries of graphs.

In this paper, we explore the mutual information maxi-
mization learning framework in heterogeneous graph rep-
resentation problems. The networked data in the real-world
usually contain very complex structures (involving multiple
types of nodes and edges), which can be formally modeled
as the heterogeneous information networks (HIN). In this
paper, we will misuse the terminologies “HIN” and “HG”
(heterogeneous graph) without any differentiation. Com-
pared with homogeneous graphs, heterogeneous graphs con-
tain more detailed information and rich semantics with com-
plex connections among multi-typed nodes. Taking the bib-
liographic network in Figure 1 as an example, it contains
three types of nodes (Author, Paper and Subject) as well as
two types of edges (Write and Belong-to). Besides, the indi-
vidual nodes themselves also carry abundant attribute infor-
mation (e.g., paper textual contents). The relations between
paper nodes can be expressed by Paper-Author-Paper (PAP)
and Paper-Subject-Paper (PSP) which represent papers writ-
ten by the same author and papers belonging to the same
subject respectively. In heterogeneous graph studies, since
Y. Sun, J. Han, et al. proposed the concept of meta-path
in (Sun et al. 2011), meta-path has been widely used to
represent the composite relations with different semantics.
GNN:ss initially proposed for the homogeneous graphs may
encounter challenges to handle relations with different se-
mantics.

To address the above challenges, we propose a novel
meta-path based unsupervised graph neural network for
heterogeneous graphs, namely Heterogeneous Deep Graph
Infomax (HDGI). In summary, our contributions in this pa-
per can be summarized as follows:

e This paper presents the first model to apply mutual infor-
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Figure 1: A heterogeneous bibliographic network.

mation maximization to representation learning in hetero-
geneous graphs.

(c) Heterogeneous Graph

e HDGI is a novel unsupervised graph neural network with
the attention mechanism. It handles graph heterogeneity
by utilizing an attention mechanism on meta-paths and
deals with unsupervised setting by applying mutual infor-
mation maximization.

e Our experiments demonstrate that the representations
learned by HDGI are effective for both classification tasks
and clustering tasks. Moreover, its performance can often
beat state-of-the-art comparative supervised models.

Related Work

Graph representation learning. As a data type contain-
ing rich structural information, many models(Grover and
Leskovec 2016; Tang et al. 2015) acting on graphs learn the
representations of nodes based on the structure of the graph.
DeepWalk (B. Perozzi and Skiena 2014) uses the set of ran-
dom walks over the graph in SkipGram to learn node embed-
dings. Several methods (Ou et al. 2016; Wang et al. 2017)
attempt to retrieve structural information through the matrix
factorization. In order to handle the heterogeneity of graphs,
metapath2vec (Dong, Chawla, and Swami 2017) samples
random walks under the guidance of meta-paths and learns
node embeddings through the skip-gram. HIN2Vec (Fu, Lee,
and Lei 2017) learns the embedding vectors of nodes and
meta-paths simultaneously while conducts prediction tasks.
Wang et al. (Wang et al. 2019) consider the attention mech-
anism in heterogeneous graph learning.

Graph neural network. Graph neural networks
(GNNs) (Zhang 2019) have made a lot of progress in
graph representation learning. Most successful GNNs
are based on supervised learning including GCN (Kipf
and Welling 2017a), GAT (Velickovic et al. 2018), and
GraphRNN (You et al. 2018). The unsupervised learn-
ing GNNs can be mainly divided into two categories,
i.e., random walk-based (B. Perozzi and Skiena 2014;
Grover and Leskovec 2016; Kipf and Welling 2017b;
Duran and Niepert 2017; W. Hamilton and Leskovec 2017)
and mutual information-based (Velickovi¢ et al. 2019).

Problem Formulation

In this section, we define critical concepts and formulate the
problem of heterogeneous graph representation learning.

Definition 1. Heterogeneous Graph. A heterogeneous
graph can be defined as G = (V, £) with a node type map-
ping function ¢ : V — T and an edge type mapping func-
tion ¢ : £ — R. Each node v € V belongs to one particular
node type in the node type set T : ¢(v) € T, and each edge
e € & belongs to a particular edge type in the edge type set
R : ¢(e) € R.The sets of node types 7 and edge types R in
heterogeneous graphs have the property that | 7| + |R| > 2.
Meta path (Sun et al. 2011) is a well-used tool in het-
erogeneous graph analysis, and we will not re-introduce its
definition here. Formally, we can represent the set of meta
paths used in this paper as {®1, Py, - , Pp}.
Definition 2. Meta-path based Adjacency Matrix. Given
a meta-path @, if there exist instances of the meta-path ®
between node v; € V; and node v; € V;, we define that v;
and v; are “connected neighbors” based on the meta-path ®.
Such indirect neighboring information can be represented as
an adjacent matrix A% € RIVelxIVel,
Problem Definition. Heterogeneous Graph Representa-
tion Learning. Given a heterogeneous graph G and the
set of node feature vectors X, the representation learning
task in G is to learn a low dimensional node representation
H e RIVI*4 which can contain both structural information
from G and node attributes from X . The learned representa-
tion H can be applied to the downstream graph-related tasks
such as node classification and node clustering, etc. Note
that we only focus on learning the representations of one
specific type of nodes in this paper. We can represent such a
set of nodes as the target-type nodes V;.

HDGI Methodology
HDGI Architecture Overview

Our method HDGI is mainly inspired by DIM (Hjelm
et al. 2019) and DGI (Velickovi¢ et al. 2019). The high-
level structure of HDGI is described in Figure 2. The in-
put of HDGI should be a heterogeneous graph G along
with the set of node feature vectors X and the meta-path
set {®1,Po,...,Pp}. Based on the original graph G and
the meta-path set, the set of meta-path based adjacency
matrices {A®1, A®2 ... A®P} can be calculated. Local
representation encoder is a hierarchical structure: learning
node representations in terms of every meta-path based
adjacency matrix respectively and then aggregating them
through semantic-level attention. With the support of the
output node representation H from the meta-path based local
representation encoder, the global representation encoder R
will output a graph-level summary vector s. Negative sam-
ples generator C is responsible for generating negative nodes
for the graph G, and these negative nodes along with the pos-
itive nodes from G will be used to train the discriminator
D with the object to maximize mutual information between
positive nodes and the graph-level summary vector §.

Meta-path based local representation encoder

The meta-path based node encoder has a two-level structure.
We first derive a node representation from each meta-path
based adjacency matrix A%, i = 1, ..., P, respectively. Af-
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Figure 2: The high-level structure of Heterogeneous Deep Graph Infomax (HDGI)

ter that the node representations based on all of {A%}F
are aggregated by an attention mechanism.

Node-level learning Each of A% can be viewed as a ho-
mogeneous graph. At this step our target is to derive a node
representation containing the information of initial node fea-
ture X = {¥,&2,...,Zn}, 7 € RE,N = V] and A%
In HDGI, we try to use GCN (Kipf and Welling 2017a) and
GAT (Velickovic et al. 2018) as components in the local rep-
resentation encoder respectively.

For each meta-path ®,,,,m € {1,2,..., P}, a node-level
encoder:

@, (X, AT = WO = (R BT R M

ag,, Will be learned in order to output the high-level rep-

resentation ﬁ?m € R for the node 7. After the node-
level learning, we can obtain the set of node representa-
tions {H®1, H®2 ... H®P} based on meta-path connec-
tions with different semantics. In the experiment section, we
will show the performance along with the analysis of using
these two GNNs as components.

Semantic-level learning In order to obtain the more gen-
eral representations of the nodes, we need to fuse these
representations {H®1, HP®2 ... H®P}. The key issue to
accomplish this combination is exploring how much each
meta-path should contribute to the final representations.
Here we add a semantic attention layer L, to learn the
weights that each meta-path should be assigned:

{8%1,8%2 . 8%P} = L(H®L, 12, ... HTP) @

Then fuse the representations of multiple semantics accord-
ing to the learned weights {S®1, S®2 ... §%r},

In order to make representations based on different meta-
paths comparable, we first need to transform each node’s
representation with a linear transformation, parameterized

by a shared weight matrix W € R <" and a shared bias
vector b. The importance of the representations based on dif-
ferent meta-paths will be measured by a shared attention
vector ¢ € R, The importance of the meta-path ®; can
be calculated as:

1 & g,
>, _ T @,
et =+ jgjl tanh(q™ - [W - h;* +0]) 3)

According to the importance of meta-paths, we will nor-
malize them using the softmax function:

exp(e™)

S%i = softmax(e®i) = ——— 7
Zle exp(e®i)

“)

Once obtained, the weights of different meta-paths are
used as coefficients to conduct a linear combination:

P
H=> 8% HT ©)
=1
‘H will serve as the final output local representations.

Global Representation Encoder

The learning object of HDGI is to maximize the mutual in-
formation between local representations and the global rep-
resentation. The local representations of nodes are included
in H, and we need the summary vector s to represent the
global information of the entire graph. Based on H, we ex-
amined three candidate encoder functions:

Averaging encoder function.

| X
F=o| > hi (6)
i=1
Pooling encoder function.

Fpoot = maz({oc(Wpooths +b),i € {1,2,...,N}) (7)

where max denotes the element-wise max operator and o is
a nonlinear activation function.
Set2vec encoder function. The final encoder function we
examine is Set2vec (Oriol Vinyals 2016) which is based on
an LSTM architecture.

Among these functions, the simple averaging function
achieves the best performance in our experiments.

HDGTI Learning

Negative samples generator The negative samples gen-
erator is responsible for generating negative samples (nodes
not exist in the original graph), which will be used to train
the mutual information based discriminator.

As our target is to maximize the mutual information be-
tween positive nodes and the graph-level summary vector,



Table 1: Summary of heterogeneous graphs in experiments

P @ ) @ @ Dataset ‘ Node-type # Nodes Edge-type # Edges ‘ Meta-path
@ @ @ @ Paper (P) 3025 Paper-Author 9744 PAP
@ @ ACM Author (A) 3835 Paper-Subject 3025 PSP
C Subject (S) 56
[N} _’
@, D, Movie (M) 4275 Movie-Actor 12838 | MAM
Actor (A) 5431 .
@ @ @ @ @ @ IMDB Di b 2082 Movie-Director 4280 MDM
&) @ by ‘r““’; ((K)) Taa Moviekeyword 20529 | MKM
eywort R
Author (A) 4057 Author-Paper 19645 APA
Figure 3: The example of generating n i mpl i -
gure 3: The example of generating negative samples beie | P;lper (P)(C) 1423028 Paper-Conference 14328 APCPA
. . . onterence
the generated negative samples will affect the structural in- Term (T) 4789 Paper-Term 88420 APTPA

formation captured by the model. In heterogeneous graph G,
we have rich and complex structural information from the
set of meta-path based adjacency matrices. In our negative
samples generator:

(X’ {A‘i)l?'A@Q""?A@P}) :C(X’ {’A@l’A¢27" '7A®P})

®)

we will keep all meta-path based adjacency matrices un-
changed which can make the overall structure of G stable.
Then we shuffle the rows of the independent node informa-
tion matrix X, which changes the index of nodes in order to
corrupt the node-level connections among them. According
to the spectral theory, the structure of the whole graph does
not change, but the initial feature corresponding to each node
has changed. We provide a simple example to illustrate the
procedure of C in Figure 3.

Mutual information based discriminator According to
the proof in (Belghazi et al. 2018), the mutual information
can be estimated by gradient descent over neural networks.
Here, we estimate the mutual information by training a dis-

criminator D to distinguish between (%;, §) and (h;, ). The
sample (l_z'l, §) is denoted as positive because node h; be-

longs to the original graph, and (ﬁj, §) is denoted as negative
as the node izj is the generated fake one. The discriminator
D is a binary classifier:

D(hs, 5) = o(hi W) ©)

Based on the relationship (Hjelm et al. 2019) between
Jensen-Shannon divergence and the mutual information, we
can maximize the mutual information with the binary cross-
entropy loss of the discriminator:

N N -
LOH, A, 5) = % (Z]E(X)[log’D(ﬁi, 9+ > E 5, llog(1 — Dy, g))])
i=1 j=1

The above loss can be optimized through the gradient de-
scent, and the representations of nodes can be learned when
the optimization is completed.

Evaluation
Datasets

We evaluate the performance of HDGI in three heteroge-
neous graphs, and the detailed descriptions of them are
shown in Table 1.

Experimental Setup

The most commonly used tasks to measure the quality of
learned representations are node classification and node
clustering (Wang et al. 2019) in graph-related research
works. We evaluate HDGI from both two kinds of tasks.

Comparison methods We compare our method HDGI to
the following state-of-the-art methods including both super-
vised and unsupervised methods:

Unsupervised methods

e Raw Feature: It represents the bag-of-words embedding,
and we will directly test them in tasks.

Metapath2vec (Dong, Chawla, and Swami 2017):
A meta-path based heterogeneous graph embedding
method, but it can only handle specific one meta-path.

o DeepWalk (B. Perozzi and Skiena 2014): A random walk
based graph embedding method, but it is designed to deal
with homogeneous graph.

o DeepWalk+Raw Feature(DeepWalk+F): We concatenate
the embeddings learned from DeepWalk and the bag-of-
words embeddings as the final representations.

o DGI (Velickovic et al. 2019): A mutual information based
unsupervised learning method which is proposed for ho-
mogeneous graph.

e HDGI-C: The proposed method which uses graph convo-
lutional network to capture local representations.

e HDGI-A: The proposed method which uses attention
mechanism (GAT (Velickovic et al. 2018)) to learn local
representations.

Supervised methods

e GCN (Kipf and Welling 2017a): GCN is a semi-
supervised methods for the node classification in homo-
geneous graphs.

o GAT (Velickovic et al. 2018): GAT applies the attention
mechanism on homogeneous graphs which requires su-
pervised setting.

e HAN (Wang et al. 2019): HAN employs node-level atten-
tion and semantic-level attention to capture the informa-
tion from all meta-paths.

For methods designed for homogeneous graphs including
DeepWalk, DGI, GCN, GAT, we test the graph ignoring the
heterogeneity and graphs constructed from every meta-path



Table 2: The results of node classification tasks

Available data X A X, A X, A, Y
Dataset ‘ Train ‘ Metric ‘ Raw Feature ‘ Metapath2vec ~ DeepWalk ‘ DeepWalk+F DGI HDGI-A  HDGI-C ‘ GCN GAT HAN
| 2000 | Micro-F1 | 08590 | 06125 05503 | 08785 09104 09178 09227 | 09250 09178  0.9267
0
| | Macro-F1 | 08585 | 06158 05582 | 08789 09104  0.9170 09232 | 09248 09172 09268
ACM
M goq, | MicroF1 | 08820 | 06378 05788 |  0.8965 09175 09333 09379 | 09317 09250  0.9400
0
| | Macro-F1 | 08802 |  0.6390 05825 | 08960 09155  0.9330 0.9379 | 09317 09248  0.9403
| 2090 | Micro-F1 | 07552 |  0.6985 02805 | 07163 0.8975  0.9062 09175 | 0.8192  0.8244  0.8992
0
| | Macro-F1 | 07473 | 0.6874 02302 | 07063 0.8921  0.8988 0.9094 | 08128 08148  0.8923
DBLP
| 207 | Micro-F1 | 08325 | 08211 03079 | 07860 09150  0.9192 09226 | 0.8383 0.8540  0.9100
0
| | Macro-F1 | 08152 | 05014 02401 | 07799 0.9052  0.9106 09153 | 08308 08476  0.9055
| 209, | MicoF1 | 05112 | 03985 03913 | 05262 0.5728  0.5482 0.5893 | 0.5931 05985  0.6077
0
| | Macro-F1 | 05107 | 04012 03888 | 05293 0.5690  0.5522 0.5914 | 05869 05944  0.6027
IMDB
| o | Mico-FI | 05900 | 04203 03953 | 06017 06003 05861  0.6592 | 0.6467 0.6540  0.6600
0
| | Macro-F1 | 05884 | 04119 04001 | 06049 0.5950  0.5834 0.6646 | 0.6457 0.6550  0.6586

Table 3: Evaluation results on the node clustering task

Data ACM DBLP IMDB

Method NMI ARI NMI ARI NMI | ARI
DeepWalk 25.47 18.24 7.40 5.30 1.23 1.22
Raw Feature 32.62 30.99 11.21 6.98 1.06 1.17
DeepWalk+F 32.54 | 31.20 11.98 6.99 1.23 1.22
Metapath2vec | 27.59 24.57 3430 | 37.54 1.15 1.51
DGI 41.09 | 34.27 | 59.23 | 61.85 0.56 2.6
HDGI-A 57.05 | 50.86 | 52.12 | 49.86 0.8 1.29
HDGI-C 5435 | 4948 | 60.76 | 62.67 1.87 3.7

based adjacency matrix respectively, then report the best re-
sult. Metapath2vec can only handle one kind of meta-path,
thus we test all meta-paths for it and report the best results.

Results

Node classification task In the node classification task,
we will train a logistic regression classifier for unsupervised
learning methods, while the supervised methods can out-
put the classification result as end-to-end models. We con-
duct the experiments with two different training-ratios (20%
and 80%). To keep the results stable, we repeat the classi-
fication process for 10 times and report the Macro-F1 and
Micro-F1 of all methods in Table 2. We can observe that
HDGI-C outperforms all other unsupervised learning meth-
ods. When compared with the supervised learning meth-
ods but designed for homogeneous graphs like GCN and
GAT, HDGI can perform much better as well which proves
that the type information and semantic information are very
important and need to be handled carefully instead of di-
rectly ignoring them in heterogeneous graphs. HDGI is also
competitive with the result reported from the supervised
model HAN which is designed for heterogeneous graphs.
The reason should be that HDGI can capture more global
structural information when the mutual information plays a
strong role in reconstructing the representation, while super-
vised loss based GNNs overemphasize the direct neighbor-
hoods (Velickovié et al. 2019). This, on the other hand, also
suggests that the features learned through supervised learn-
ing in graphs may have limitations, either from the structure

or from a task-based preference.

Node clustering task In the node clustering task, we use
the KMeans to conduct the clustering based on the learned
representations. The number of clusters K is set as the num-
ber of the node classes. We will not use any label in this
unsupervised learning task and make the comparison among
all unsupervised learning methods. We repeat the cluster-
ing process for 10 times and report the average NMI and
ARI of all methods in Table 2. DeepWalk can not perform
well because they are not able to handle the heterogeneity of
graphs. Metapath2vec can not handle diversity semantic in-
formation simultaneously which makes the representations
not effective enough. The verification based on node clus-
tering tasks also demonstrates that HDGI can learn effective
representation considering the structural information, the se-
mantic information and the node independent information
simultaneously.

HDGI-A vs HDGI-C From the comparison between
HDGI-C and HDGI-A in node classification tasks, the dif-
ference in results between them reflects some interesting
things. HDGI-C has better performance than HDGI-A in all
experiments, which means that the graph convolution works
better than the attention mechanism in capturing local rep-
resentation. We insist that the reason is that the graph at-
tention mechanism is strictly limited to the direct neighbors
of nodes, the graph convolution considering hierarchical de-
pendencies can see farther than the graph attention.

VI  Conclusion

In this paper, we propose an unsupervised graph neural
network model, HDGI, which learns node representations
in heterogeneous graphs. We demonstrate the effectiveness
of learned representations in three heterogeneous graphs.
HDAGI is particularly competitive in node classification tasks
with state-of-the-art supervised methods, where they have
the additional supervised label information. We are op-
timistic that mutual information maximization will be a
promising future direction for unsupervised representation
learning.
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