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Abstract—Optimization algorithms with momentum, e.g.,
(ADAM) helps accelerate SGD in parameter updating, which can
minify the oscillations of parameters update route. However, the
fixed momentum weight (e.g., β1 in ADAM) will propagate errors
in momentum computing. Besides, such a hyperparameter can be
extremely hard to tune in applications. In this paper, we introduce
a novel optimization algorithm, namely Discriminative wEight
on Adaptive Momentum (DEAM). DEAM proposes to compute
the momentum weight automatically based on the discriminative
angle. The momentum term weight will be assigned with an
appropriate value which configures the influence of momentum
in the current step. In addition, DEAM also contains a novel
backtrack term, which restricts redundant updates when the
correction of the last step is needed. The backtrack term can
effectively adapt the learning rate and achieve the anticipatory
update as well. Extensive experiments demonstrate that DEAM
can achieve a faster convergence rate than the existing optimiza-
tion algorithms in training various models. A full version of this
paper can be accessed in [1].

I. INTRODUCTION

Deep learning methods can achieve outstanding perfor-
mance in multiple fields including computer vision [5], natural
language processing [3], and graph analysis [11]. Optimiza-
tion algorithms are critical for deep learning methods: not
only the model performance, but also training efficiency are
greatly affected. In order to cope with the high computa-
tional complexity of training deep learning methods, stochastic
gradient descent (SGD) [12] is utilized to update parameters
based on the gradient of each training sample instead. The
idea of momentum [9], inspired by Newton’s first law of
motion, is used to handle the oscillations of SGD. SGD
with momentum [15] achieves the faster convergence rate and
better optimization results compared with the original SGD.
In gradient descent based optimization, training efficiency is
also greatly affected by the learning rate. AdaGrad [4] is
the first optimization algorithm with adaptive learning rates,
which makes use of the learning rate decay. ADAM [6]
involves both adaptive learning [12] and momentum [9] and
utilizes the exponential decay rate β1 (momentum weight)
to accelerate the convergence in the relevant directions and
dampen oscillations. However, the decay rate β1 of the first-
order momentum mt in ADAM is a fixed number, and the
selection of the hyperparameter β1 may affect the performance
of ADAM greatly.

During the optimization process, it is common that there
exist errors in some update steps. These errors can be caused
by the inappropriate momentum calculation, and then lead

to slower convergence or oscillations. For each parameter
updates, the fixed momentum weight fails to take the different
influence of the current gradient into consideration, which will
render errors in momentum computing. For example, when
there exist parts of opposite eigen components [9] between
the continuous two parameter updates (we regard this situation
as an error), the current gradient should be assigned a larger
weight to correct the momentum in the last update, instead
of being placed with a fixed influence. We will illustrate this
problem through cases in Section III-A1 where ADAM with
a fixed weight β1 cannot handle some simple but intuitive
convex optimization problems. Based on this situation, we
need to control the influence of momentum by an adaptive
weight. What’s more, designing hyperparameter-free optimiza-
tion algorithms has been a very important research problem in
recent years. Reducing the number of hyperparameters will not
only stabilize the performance of the optimization algorithm,
but also release the workload of hyperparameters tuning.

In this paper, we introduce a novel optimization algo-
rithm, namely DEAM (Discrim-inative wEight on Adaptive
Momentum) to deal with the aforementioned problems.
DEAM computes an adaptive momentum weight β1,t based on
the “discriminative angle” θ between the historical momentum
and the newly calculated gradient in each training iteration
automatically. Besides, DEAM introduces a novel backtrack
term, i.e., dt, which is proposed to correct the redundant
update of the previous training epoch when necessary. The
calculation of dt is also based on the discriminative angle
θ. We also provide extensive experiments to verify that the
adaptive momentum term weight β1,t and the operation of
backtrack term dt can be crucial for the performance of the
learning algorithms.

II. RELATED WORKS
Adaptive Learning Rates: To overcome the problems brought
by the unified learning rate, some variant algorithms ap-
plying adaptive learning rate [2] have been proposed, such
as AdaGrad [4], RMSProp [16], ADAM [6] and recent
AdaBound [8]. AdaGrad adopts different learning rates to
different variables, and its variable updating equation can be
represented as

gt = η · ∇ft(wt)
wt = wt−1 − gt√∑t

i=1 gi�gi
(1)

where η is the learning rate and ∇ is the derivative of the loss
function. We have to mention that the

∑
, � and √ in the



Algorithm 1: DEAM Algorithm
Input: loss function f(w) with parameters w; learning rate {ηt}Tt=1;

β2 = 0.999
Output: trained parameters
m0 ← 0; /* Initialize first-order momentum */
v0 ← 0, v̂0 ← 0; /* Initialize second-order momentum */
for t = 1, 2, . . . , T do

gt = ∇ft(wt);

θ =

〈
mt−1√
v̂t−1

,gt

〉
; /* The operator 〈·, ·〉 represents the angle

between two vectors. */
if θ ∈ [0, π

2
) then

β1,t = sin θ/K + ε;
else

β1,t = 1/K /* Here, K =
10(2+π)

2π
. */;

end
mt = (1− β1,t) ·mt−1 + β1,t · gt;
vt = β2 · vt−1 + (1− β2) · gt � gt; /* � is element-wise

multiplication.*/
v̂t = max{v̂t−1,vt};
dt = min{0.5 cos θ, 0};
∆t = dt ·∆t−1 − ηt · mt√

v̂t
;

wt = wt−1 + ∆t;
end
return wT

above equation are element-wise operations. One drawback
of AdaGrad is that with the increasing of iteration number t,
the adaptive term may inflate continuously, which leads to a
very slow convergence rate in the later stage of the training
process. RMSProp [16] can solve this problem by using the
moving average of historical gradients.
Momentum: Momentum [9], [14] is a method that helps
accelerate SGD in the relevant direction and prevent oscilla-
tions on the descent route. The momentum accelerates updates
for dimensions whose gradients are in the same direction as
historical gradients, and decelerates updates for dimensions
whose gradients are the opposite. ADAM [6] is proposed
based on momentum and adaptive learning rates for different
variables. It updating rules can be presented as:{

mt = β1 ·mt−1 + (1− β1) · gt; m̂t = mt/(1− βt1)
vt = β2 · vt−1 + (1− β2) · gt � gt; v̂t = vt/(1− βt2)
wt = wt−1 − η · m̂t/(

√
v̂t + ε)

(2)
ADAM records the first-order momentum and the second-
order momentum of the gradients using the moving average,
and further computes the bias-corrected version of them.
AMSGrad [10] is a modified version of ADAM, which
redefines second-order momentum by a maximum function.

III. PROPOSED ALGORITHM

Proposed algorithm DEAM is presented in Algorithm 1. In
the algorithm, f1, f2, . . . , fT is a sequence of loss functions
computed with the training mini-batches in different iterations
(or epochs). DEAM introduces two new terms in the learning
process: (1) the adaptive momentum weight β1,t, and (2) the
“backtrack term” dt. In the tth training iteration, both β1,t
and dt are calculated based on the “discriminative angle”
θ, which is the angle between previous mt−1/

√
v̂t−1 and

current gradient gt (since essentially both mt−1/
√

v̂t−1 and
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Figure 1. The update routes of ADAM with β1 = 0.9 (the blue line) and
β1 = 0.0 (the red line).
gt are vectors, there exists an angle between them). Here,
m is the first-order momentum that records the exponential
moving average of historical gradients; v is the exponential
moving average of the squared gradients, which is called the
second-order momentum. In the following parts of this paper,
we will denote mt−1/

√
v̂t−1 as the “update volume” in the

(t− 1)th iteration. Formally, β1,t determines the weights of
previous first-order momentum mt−1 and current gradient gt
when calculation the present mt. Meanwhile, the backtrack
term dt represents the returning step of the previous update on
parameters. We can notice that in each iteration, after the θ has
been calculated, the β1,t and dt are directly obtained according
to the θ. In this way, we can calculate appropriate β1,t as the
discriminative angle changes. The dt term balances between
the historical update term ∆t−1 (defined in Algorithm 1) and
the current update volume mt/

√
v̂t when computing ∆t. In

the proposed DEAM, β1,t and dt terms can collaborate with
each other and achieve faster convergence.
A. Adaptive Momentum Weight β1,t

1) Motivation: In the ADAM [6] paper, (the first-order)
momentum’s weight (i.e., β1) is a pre-specified fixed value,
and commonly β1 = 0.9. It has been used in many applica-
tions and the performance can usually meet the expectations.
However, this setting is not applicable in some situations. For
example, for the case

f(x, y) = x2 + 4y2, (3)

where x and y are two variables, it is obvious that f is a convex
function. If f(x, y) is the objective function to optimize, we
try to use ADAM to find its global optima.

Let’s assume ADAM starts the variable search from
(−4,−1) (i.e., the initial variable vector is w0 = (−4,−1)>)
and the initial learning rate is η1 = 1. Different choices of
β1 will lead to very different performance of ADAM. For
instance, in Figure 1, we illustrate the update routes of ADAM
with β1 = 0.9 and β1 = 0.0 as the blue and red lines,
respectively. In Figure 1, the ellipse lines are the contour lines
of f(x, y), and points on the same line share the same function
value. We can observe that after the first updating, both of the
two approaches will update variables to (−3, 0) point (i.e., the
updated variable vector will be w1 = (−3, 0)>). In the second
step, since the current gradient g2 = (−6, 0)>, the ADAM
with β1 = 0.0 will update variables in the (1, 0) direction.
Meanwhile, for the ADAM with β1 = 0.9, its m2 is computed
by integrating m1 and g2 together (whose weights are β1 and
1−β1, respectively). Therefore the updating direction of it will



be more inclined to the previous direction instead. Compared
with ADAM with β1 = 0.0, the ADAM with β1 = 0.9 takes
much more iterations until converging.

From the analysis above, we can observe that a careful
tuning and updating of β1 in the learning process can be
crucial for the performance of ADAM. However, by this
context so far, there still exist no effective approaches for
guiding the parameter tuning yet. To deal with this problem,
DEAM introduces the concept of discriminative angle θ for
computing β1 automatically as follows.

2) Mechanism: The momentum weight β1 will be updated
in each iteration in DEAM, and we can denote its value
computed in the tth iteration as β1,t formally. Essentially,
in the tth iteration of the training process, both the previous
update volume and gt are vectors (or directions), and these
directions directly decide the updating process. Thus we try to
extract their relation with the help of angle, and subsequently
determine the weight β1,t (or 1− β1,t) by the angle.

In Algorithm 1, the discriminative angle θ in the tth iteration
is calculated by

θ =

〈
− mt−1√

v̂t−1
,−gt

〉
=

〈
mt−1√

v̂t−1
,gt

〉
(4)

Here, the operator 〈·, ·〉 denotes the angle between two vec-
tors (the angle is calculated according to the cosine sim-
ilarity). This expression is easy to understand, since the
−mt−1/

√
v̂t−1 can represent the updating direction of (t −

1)th iteration in AMSGrad, meanwhile −gt is the reverse
of the present gradient. So we can simplify it as θ =<
mt−1√
v̂t−1

,gt >. If θ is close to zero (denoted by θ → 0◦), the

mt−1/
√

v̂t−1 (previous update volume) and gt are almost
in the same direction, and the weights for them will not be
very important. Meanwhile, if θ approaches 180◦ (denoted
by θ → 180◦), the previous update volume and gt will be
in totally reverse directions. This means in the current step,
the previous momentum term is already in a wrong direction.
Therefore, to rectify this error of the last momentum, DEAM
proposes to assign the current gradient’s weight (i.e., β1,t in
our paper) with a larger value instead. As the β1,t varies when
θ changes from 0◦ to 180◦, we intend to define β1,t with the
following equation:

β1,t =

{
sin θ/K + ε θ ∈ [0, π2 )

1/K θ ∈ [π2 , π]
(5)

where K = 10(2+π)/2π and ε is a very small value (e.g., ε =
0.001). In the equation above, the threshold of the piecewise
function is θ = π/2, because sin θ comes to the maximum at
this point and goes down when θ > π

2 . If π
2 ≤ θ ≤ π, which

is exactly the situation θ → 180◦ we discussed above, we
intend to keep β1,t in a relatively large value. The reason we
rescale sin θ by 1/K is that directly applying β1,t = sin θ will
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Figure 2. Some examples about dt

overweight gt, which may cause fluctuations on the update
routes. The value of K is determined by:

K = 10(

∫ π
2

0

sin θdθ +

∫ π

π
2

1dθ) =
10(2 + π)

2π
(6)

In the equation above, assume θ is randomly distributed on
[0, π], in this calculation we can get

E[β1,t] =
1

π

∫ π

0

β1,t(θ)dθ = 0.1 (7)

In other words, the expectation of β1,t (i.e., E(β1,t)) will
be identical to the β1 used in ADAM paper [6]. After
obtaining β1,t, it will be applied to calculating mt as shown in
Algorithm 1. In this way, we have achieved momentum with
adaptive weights.

B. Backtrack Term dt

1) Motivation: When optimizer (e.g., ADAM) updates
variables of the loss function (e.g., f(x, y)), some update
routes will look like the black arrow lines shown in Fig-
ure 2(a), especially when the discriminative angle θ is larger
than 90◦. We call this phenomenon the ”zig-zag” route. In
Figure 2(a), it shows the update routes of a 2-dimension
function. Each black arrow line in the figure represents the
variables’ update in each epoch; the red dashed line is the
direction of the update routes; the θ is the discriminative
angle. If θ ≥ 90◦, the ”zig-zag” phenomenon will appear
severely, which may lead to slower convergence speed. The
main reason is when θ ≥ 90◦, if we map two neighboring
update directions onto the coordinate axes, there will be at
least one axis of the directions being opposite. This situation
is shown in Figure 2(b). For the example of a function with
2-dimension variables, the update volume m1/

√
v̂1 can be

decomposed into (x1, y1)
> in Figure 2(b), and the same with



m2/
√

v̂2. We can notice that y1 and y2 are in the opposite
directions, so the first and second steps practically have inverse
updates subject to the y axis. We attribute this situation to the
over-update (or redundant update) of the first step. Therefore
the backtrack term dt is proposed to restrict this situation.

2) Mechanism: Since the redundant update situation is
caused by over updating of the previous iteration, simply we
intend to deal with it through a backward step. Meanwhile,
during the updating process of variables, not every step will
suffer from the redundant update: if θ → 0◦, the updating
process becomes smooth, not like the situation shown in
Figure 2(a). Besides, from the analysis above we conclude
that if θ ≥ 90◦, there will be at least one dimension involves
the redundant update. Thus, in the tth iteration we quantify dt
as the following equation:

dt = min{0.5 cos θ, 0} (8)

and we rewrite the updating term with backtrack in DEAM
as

∆t = dt ·∆t−1 − ηt ·
mt√
v̂t

(9)

where θ is the discriminative angle and ∆t is the updating
term in Algorithm 1. By designing dt in this way, when θ →
0◦, dt = 0 and there is no backward step, the updating term
∆t = −ηt · mt√

v̂t
is similar to AMSGrad; when θ → 180◦, dt =

0.5 cos θ and comes to the maximum value when θ = 180◦.
The reason that cos θ is rescaled by 0.5 is that: in Figure 2(c),
wt−1 and wt are the variables updated by DEAM without
dt term in the (t− 1)th and tth iterations respectively. If the
backtrack mechanism is implemented, in the (t+1)th iteration,
since θ = 180◦, firstly dt = 0.5 cos θ → −0.5 makes the
backtrack to the w′t point (the middle point of wt−1 and
wt). Thus, this backtrack step allows the variable to further
approach the optima.

By implementing the backtrack term dt, DEAM can com-
bine it with the adaptive momentum weight β1,t to achieve the
collaborating of them. For the situation of large discriminative
angle (θ ≥ 90◦), both β1,t and dt in the current step can
make corrections to the last update. Since when θ ≥ 90◦, the
last update is in conflict direction compared with the current
gradient, and β1,t will increase to allocate a large weight for
the present gradient, which subsequently corrects the previous
step. Meanwhile, the dt will also conduct a backward step of
to further rectify the last update.

IV. EXPERIMENTS

We have applied the DEAM algorithm on multiple popular
machine learning and deep learning structures, including lo-
gistic regression, deep neural networks (DNN), convolutional
neural networks (CNN). These structures cover both convex
and non-convex situations. To show the advantages of the
algorithm, we compare it with various popular optimization al-
gorithms, including ADAM [6], RMSProp [16], AdaGrad [4]
and SGD. For all the experiments, the loss function we have
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Figure 3. Results of Logistic Regression and DNN structures

selected is the cross-entropy loss. During the training process,
the minibatch size for logistic regression, DNN and CNN
structures is 128 and the learning rate is 0.0001.

A. Experiment Settings and Results

Logistic Regression: We firstly evaluate our algorithm on the
multi-class logistic regression model, since it is widely used
and owns a convex objective function. We conduct logistic
regression on the ORL dataset [13]. ORL dataset consists of
face images of 40 people, each person has ten images and
each image is in the size of 112 × 92. The loss of objective
functions on both training set and testing set are shown in
Figure 3(a), 3(b).
Deep Neural Network: We use deep neural network (DNN)
with two fully connected layers of 1,000 hidden units and the
Relu activation function. The dataset we use is MNIST. The
MNIST dataset includes 60,000 training samples and 10,000
testing samples, where each sample is a 28 × 28 image of
hand-written numbers from 0 to 9. Result are exhibited in
Figure 3(c), 3(d).
Convolutional Neural Network: The CNN models in our
experiments are based on the LeNet-5 [7], and it is imple-
mented on multiple datasets: ORL, MNIST and CIFAR-10.
The CIFAR-10 dataset consists of 60,000 32 × 32 images
in 10 classes, with 6,000 images per class. For the ORL
dataset, the CNN model has two convolutional layers with
16 and 36 feature maps of 5 kernels and 2 max-pooling
layers, and a fully connected layer with 1024 neurons. For
the MNIST dataset, the CNN structure follows the LeNet-
5 structure in [7]; for CIFAR-10 dataset, the CNN model
consists of three convolutional layers with 64, 128, 256 kernels
respectively, and a fully connected layer having 1024 neurons.
The results are shown in Figure 4.

We can observe that DEAM converges faster than other
widely used optimization algorithms in all the cases. Within
the same number of epoches, DEAM can converge to the
lowest loss on both the training set and test set.
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Figure 4. Results of CNN structure
Table I

RUNNING TIME OF DEAM AND COMPARISON METHODS (THE UNIT OF VALUES IS SECOND)

Comparison
Methods

Running time on all models
Logistic Regression

on ORL DNN on MNIST CNN on ORL CNN on MNIST CNN on CIFAR-10

DEAM 36 282 33382 11485 55928
ADAM 102 664 47418 21775 67584

RMSProp 48 307 36722 11997 84305
AdaGrad > 200 667 > 100000 > 50000 > 100000

SGD > 200 346 > 100000 16985 67564

B. Time-consuming Analysis

We have recorded the running time of DEAM and other
comparison algorithms in every experiment, and list them
in the Table I. The running time shown in Table I contains
“>”, which means the model still does not converge at the
specific time. From the results we can observe that in all of
our experiments, DEAM finally converges within the smallest
mount of time. From the results in Figures 3, 4, and Table I,
we can conclude that DEAM can converge not only in fewer
epochs, but using less running time. The device we used is
the Dell PowerEdge T630 Tower Server, with 80 cores 64-bit
Intel Xeon CPU E5-2698 v4@2.2GHz. The total memory is
256 GB, with an extra (SSD) swap of 256 GB.

V. CONCLUSION

In this paper, we have introduced a novel optimization
algorithm, the DEAM, which implements the momentum
with discriminative weights and the backtrack term. We have
analyzed the advantages of the proposed algorithm. Extensive
experiments have shown that the proposed algorithm can
converge faster than existing methods on both convex and
non-convex situations, and the time consuming is better than
existing methods.
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