
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

Adaptive Momentum with Discriminative Weightfor Neural Network Stochastic Optimization
Jiyang Bai1* | Yuxiang Ren2* | Jiawei Zhang3
1Department of Computer Science, Florida
State University, Tallahassee, Florida,
32306, USA. Email: bai@cs.fsu.edu
2IFM Lab, Department of Computer
Science, Florida State University,
Tallahassee, Florida, 32306, USA. Email:
yuxiang@ifmlab.org
3IFM Lab, Department of Computer
Science, University of California, Davis,
Davis, California, 95616, USA. Email:
jiawei@ifmlab.org
Correspondence
Yuxiang Ren, IFM Lab, Department of
Computer Science, Florida State University,
Tallahassee, Florida, 32306, USA
Email: yuxiang@ifmlab.org
Funding information
National Science Foundation, Grant
Number: IIS-1763365

Optimization algorithmswithmomentum have beenwidely
used for building deep learning models because of the fast
convergence rate. Momentum helps accelerate Stochas-
tic gradient descent in relevant directions in parameter up-
dating, minifying the oscillations of the parameters update
route. The gradient of each step in optimization algorithms
with momentum is calculated by a part of the training sam-
ples, so there exists stochasticity, which may bring errors
to parameter updates. In this case, momentum placing the
influence of the last step to the current step with a fixed
weight is obviously inaccurate, which propagates the error
and hinders the correction of the current step. Besides,
such a hyperparameter can be extremely hard to tune in
applications as well. In this paper, we introduce a novel
optimization algorithm, namely Discriminative wEight on
AdaptiveMomentum (DEAM). Instead of assigning the mo-
mentum term weight with a fixed hyperparameter, DEAM
proposes to compute the momentum weight automatically
based on the discriminative angle. The momentum term
weight will be assigned with an appropriate value that con-
figures momentum in the current step. In this way, DEAM
involves fewer hyperparameters. DEAM also contains a
novel backtrack term, which restricts redundant updates

*Should be considered joint first author

1

2 Bai & Ren et al.

when the correction of the last step is needed. The back-
track term can effectively adapt the learning rate and achieve
the anticipatory update aswell. Extensive experiments demon-
strate that DEAM can achieve a faster convergence rate
than the existing optimization algorithms in training the deep
learning models of both convex and non-convex situations.
K E YWORD S
Optimization Algorithm; Stochastic Optimization; Deep Learning;
Neural Network Training; Momentum.

1 | INTRODUCTION
Deep learning methods can achieve outstanding performance in multiple fields, including computer vision [1, 2, 3, 4],
natural language processing [5, 6], speech and audio processing [7], and graph analysis [8]. Training deep learning
models involves an optimization process to find the parameters that minimize the loss function. Simultaneously, the
number of parameters commonly used in deep learning methods can be huge.

Therefore, optimization algorithms are critical for deep learning methods: not only the model performance but
also training efficiency are greatly affected. In order to cope with the high computational complexity of training deep
learning methods, stochastic gradient descent (SGD) [9] is utilized to update parameters based on the gradient of
each training sample instead. The idea of momentum [10], inspired by Newton’s first law of motion, is used to handle
the oscillations of SGD. SGD with momentum [11] achieves a faster convergence rate and better optimization results
compared with the original SGD. In gradient descent-based optimization, training efficiency is also greatly affected by
the learning rate. AdaGrad [12] is the first optimization algorithmwith adaptive learning rates, which uses the learning
rate decay. AdaDelta [13] subsequently improves AdaGrad to avoid the extremely small learning rates. ADAM [14]
involves both adaptive learning [9] andmomentum [10] and utilizes the exponential decay rate β1 (momentumweight)
to accelerate the convergence in the relevant directions and dampen oscillations. However, the decay rate β1 of the
first-order momentum mt in ADAM is a fixed number, and the selection of the hyperparameter β1 may affect the
performance of ADAM greatly. Commonly, β1 = 0.9 is the most widely used parameter as introduced in [14], but
there is still no theoretical evidence proving its advantages. We summarize the contributions of methods mentioned
above in the Table 1.

During the optimization process, it is common that there exist errors in some update steps. These errors can be
caused by the inappropriate momentum calculation and then lead to slower convergence or oscillations. For each
parameter update, the fixed momentum weight fails to take the different influences of the current gradient into con-
sideration, rendering errors in momentum computing. For example, when there exist parts of opposite eigen compo-
nents [10] between the continuous two parameter updates (we regard this situation as an error), the current gradient
should be assigned a larger weight to correct the momentum in the last update instead of being placed with a fixed
influence. We will illustrate this problem through cases in Section 3.1.1 where ADAM with a fixed weight β1 cannot
handle some simple but intuitive convex optimization problems. Based on this situation, we need to control the in-
fluence of momentum by an adaptive weight. Moreover, designing hyperparameter-free optimization algorithms has
been a critical research problem in recent years. Reducing the number of hyperparameters will not only stabilize the

Bai & Ren et al. 3

TABLE 1 Contributions of related works
Methods Contributions

SGD with momentum propose the momentum mechanism to handle the oscillations
[10, 11] of SGD

AdaGrad [12] propose the adaptive learning rate decay
AdaDelta [13] avoid the extremely small learning rates in AdaGrad
ADAM [14] combine both adaptive learning rate and momentum mechanisms

performance of the optimization algorithm but also release the workload of hyperparameters tuning.
In this paper, we introduce a novel optimization algorithm, namely DEAM (Discriminative wEight on Adaptive

Momentum) to deal with the aforementioned problems. DEAM proposes an adaptive momentum weight β1,t , which
will be updated in each training iteration automatically. Besides, DEAM employs a novel backtrack term dt , which will
restrict redundant updates when DEAM decides that the correction of the previous step is needed. We also provide
the theoretical analysis about the adaptive momentum weight along with extensive experiments. Based on them, we
verify that the adaptive momentum term weight β1,t and the operation of backtrack term dt can be crucial for the
learning algorithms’ performance.

Here, we summarize the detailed learning mechanism of DEAM as follows:

• DEAM computes adaptive momentum weight β1,t based on the “discriminative angle" θ between the historical
momentum and the newly calculated gradient.

• DEAM introduces a novel backtrack term, i.e., dt , which is proposed to correct the redundant update of the
previous training epoch when necessary. The calculation of dt is also based on the discriminative angle θ.

• DEAM involves fewer hyperparameters than the ADAM during the training process, which can decrease the
workload of hyperparameter tuning.

Detailed information about the learning mechanism and the concepts mentioned above will be described in the
following sections. This paper will be organized as follows. In Section 2, we cover related works about widely used
optimization algorithms. In Section 3, we analyze more detail of our proposed algorithm, whose theoretical conver-
gence rate will also be studied. Extensive experiments are exhibited in Section 4. Finally, we give a conclusion of this
paper in Section 6.

2 | PROBLEM DEFINITION AND RELATED WORKS
Function Optimization: Given a differentiable function f and its domain X, the function optimization is to find the
optima point x ∗ ∈ X such that [x ∈ X, f (x ∗) ≤ f (x) . For the neural network function optimization, the optimization
algorithms aim at finding the optima point of neural networks: that is, the weights of network network producing
the smallest loss function value. Commonly, the optimization algorithms are designed based on the gradient descent
algorithm. We summarize the notations used in this paper in Table 2.
Stochastic Gradient Descent: Stochastic gradient descent (SGD) [9, 15] performs variable updating for each training
example X[i , :] and label y[i] (Here, X represents the training set matrix, every row of which is a training sample

4 Bai & Ren et al.

TABLE 2 Abbreviated notations used in the paper
Notation Description

ηt the learning rate at the t t h training epoch
mt the first-order momentum at the t t h training epoch
γ the weight of the first-order momentum in the SGD with momentum optimizer
vt the second-order momentum in the RSMProp, ADAM, and DEAM optimizers

at the t t h training epoch
β1

the weight of the previous first-order momentum when computing the
updated first-order momentum in the ADAM optimizer

β2
the weight of the previous second-order momentum when computing the
updated first-order momentum in the ADAM and DEAM optimizers

β1,t
the adaptive weight of the current gradient when computing the updated
first-order momentum in the DEAM optimizer at the t t h training epoch

∆t the model weights update term in the DEAM optimizer at the t t h training epoch
dt

the backtrack term when computing the current weight update term ∆t in
the DEAM optimizer at the t t h training epoch

αd the backtrack term coefficient
θ the discriminative angle in the DEAM optimizer

vector; y is the vector of all training samples’ labels.):
wt = wt−1 − η · +ft (X[i , :], y[i];wt) (1)

where η is the learning rate and + is the derivative of the loss function. The advantages of SGD include fast converging
speed compared with gradient descent and preventing redundancy [9]. [16] use the variance reduction methods to
accelerate the training process of SGD. The works of SAG [17] and SDCA [18] can achieve a variance reduction effect
for SGD that leads to a linear convergence rate. Based on them, SVRG [19] does not require the storage of gradients;
SAGA [20] is with better theoretical convergence rates and supports non-strongly convex problems.
Adaptive Learning Rates: To overcome the problems brought by the unified learning rate, some variant algorithms ap-
plying adaptive learning rate [21] have been proposed, such asAdaGrad [12], AdaDelta [13], RMSProp [22], ADAM [14]
and recent ESGD [23], AdaBound [24]. AdaGrad adopts different learning rates to different variables, and its variable
updating equation can be represented as

gt = η · +ft (wt)wt = wt−1 − gt√∑t
i=1

gi �gi (2)

where η is the learning rate and + is the derivative of the loss function. We have to mention that the ∑, � and √
in the above equation are element-wise operations. One drawback of AdaGrad is that with the increase of iteration

Bai & Ren et al. 5

number t , the adaptive term ∑t
i=1 gi � gi will inflate continuously, which will lead to a very slow convergence rate.

RMSProp [22] can solve this problem by using themoving average of historical gradients. The update rule of RMSProp
is shown as follows:

wt = wt−1 − η · gt /√vtvt = β2 · vt−1 + (1 − β2) · gt � gt . (3)
In the above equation, term β2 is a hyper-parameter in the interval [0, 1]. In this way, the adaptive term vt will not
increase continuously.
Momentum: Momentum [10, 11, 25, 26, 27] is a method that helps accelerate SGD in the relevant direction and
discourage oscillations on the descent route. SGD with momentum updates variables with the following equations:

wt = wt−1 −mtmt = γ ·mt−1 + η · +ft (wt) . (4)
In the equation, γ is the weight of the momentum, and η is the learning rate. The momentum accelerates updates
for dimensions whose gradients are in the same direction as historical gradients, and reduces updates for dimensions
whose gradients are the opposite. Momentum is also applied in Nesterov accelerated gradient (NAG) [28], which can
be presented as

wt = wt−1 −mtmt = γmt−1 + η · +ft (wt−1 − γmt−1) . (5)
ADAM [14] [29] is proposed based on SGD andmomentum concept, and it also computes individual adaptive learning
rates for different variables. The variable updating rules in ADAM can be represented by the following equations:

gt = +ft (w)mt = β1 ·mt−1 + (1 − β1) · gt ; m̂t = mt /(1 − β t1)vt = β2 · vt−1 + (1 − β2) · gt � gt ; v̂t = vt /(1 − β t2)wt = wt−1 − η · m̂t /(

√v̂t + ε) (6)

ADAM records the first-order momentummt and the second-order momentum vt of the gradients using the mov-
ing average (controlled by the parameters β1 and β1, respectively), and further computes the bias-corrected version
of them (m̂t and v̂t). Based on ADAM, [30] proposes to switch from ADAM to SGD during the training process. In
this way, it can combine the advantages of both SGD and ADAM.

AMSGrad [31] is a modified version of ADAM. AMSGrad changes the definition of second-order momentum by
v̂t = max{v̂t−1, vt }, and other settings are almost the same as ADAM. This formula is to make sure that the second
moment will always increase along with t , which ensure the decreasing of step size. What’s more, AMSGrad applies
a varied learning rate ηt comparing to ADAM, but the definition of ηt is not specified.

DEAM is an optimization algorithm that involves the adaptive momentumweights and backtrack machanism, and
is firstly proposed in [32]. In this paper, we further explore the effectiveness of DEAM by giving a detailed theoretical
analysis on the convergence and comprehensive experiments on more types of models (e.g., Graph Neural Networks
and Recurrent Neural Networks). Both the theoretical convergence analysis and the experimental results further
demonstrate the validity of DEAM.
Algorithm Convergence: Most of the machine learning and deep learning tasks are under non-convex conditions.
However, most convergence analysis of the mentioned optimization algorithms is based on convex situations. [33]

6 Bai & Ren et al.

Algorithm 1: DEAM Algorithm
Input: loss function f (w) with parameters w; learning rate {ηt }Tt=1; β2 = 0.999Output: trained parameters
m0 ← 0; /* Initialize first-order momentum. */
v0 ← 0, v̂0 ← 0; /* Initialize second-order momentum. */
for t = 1, 2, . . . ,T dogt = +ft (wt) ;

θ =

〈 mt−1√v̂t−1 , gt
〉
; /* The operator 〈·, ·〉 represents the angle between two vectors. */

if θ ∈ [0, π2) then
β1,t = sin θ/K + ε;

else
β1,t = 1/K /* Here, K = 5(2+π)

π . */;
end
mt = (1 − β1,t) ·mt−1 + β1,t · gt ;
vt = β2 · vt−1 + (1 − β2) · gt � gt ; /* � is element-wise multiplication.*/
v̂t = max{v̂t−1, vt };
dt = min{αd cos θ, 0} /* Here, αd = 0.5 in default. */;
∆t = dt · ∆t−1 − ηt · mt√v̂t ;wt = wt−1 + ∆t ;end

return wT

gives a convergence rate of order O (logT /√T) for non-convex stochastic optimization with respect to the ADAM-
type methods.

3 | PROPOSED ALGORITHM
Our proposed algorithm DEAM is presented in Algorithm 1. In the algorithm, f1, f2, . . . , fT is a sequence of loss func-
tions computed with the training mini-batches in different iterations (or epochs). DEAM introduces two new terms
in the learning process: (1) the adaptive momentum weight β1,t , and (2) the “backtrack term" dt . In the t t h training
iteration, both β1,t and dt are calculated based on the “discriminative angle" θ, which is the angle between previous
mt−1/

√v̂t−1 and current gradient gt (since essentially both mt−1/
√v̂t−1 and gt are vectors, there exists an angle be-

tween them). Here,m is the first-ordermomentum that records the exponential moving average of historical gradients;
v is the exponential moving average of the squared gradients, which is called the second-order momentum. In the fol-
lowing parts of this paper, we will denote mt−1/

√v̂t−1 as the “update volume” in the (t − 1) t h iteration. Formally, β1,t
determines the weights of previous first-order momentummt−1 and current gradient gt when calculating the present
mt . Meanwhile, the backtrack term dt represents the returning step of the previous update on parameters. We can
notice that in each iteration, after the θ has been calculated, the β1,t and dt are directly obtained according to the θ.
In this way, we can calculate appropriate β1,t as the discriminative angle changes. The dt term balances between the
historical update term ∆t−1 (defined in Algorithm 1) and the current update volume mt /

√v̂t when computing ∆t . In
the proposed DEAM, β1,t and dt terms can collaborate with each other and achieve faster convergence.

Bai & Ren et al. 7

4 2 0 2 4
X

3

2

1

0

1

2

3

Y

F IGURE 1 The update routes of ADAM with β1 = 0.9 (the blue line) and β1 = 0.0 (the red line).

3.1 | Adaptive MomentumWeight β1,t
3.1.1 | Motivation
In the ADAM [14] paper, (the first-order) momentum’s weight (i.e., β1) is a pre-specified fixed value, and commonly
β1 = 0.9. It has been used in many applications and the performance can usually meet the expectations. However,
this setting is not applicable in some situations. For example, for the case

f (x , y) = x2 + 4y 2, (7)
where x and y are two variables, it is obvious that f is a convex function. If f (x , y) is the objective function to optimize,
we try to use ADAM to find its global optima.

Let’s assume ADAM starts the variable search from (−4,−1) (i.e., the initial variable vector isw0 = (−4,−1)>) and
the initial learning rate is η1 = 1. Different choices of β1 will lead to very different performance of ADAM. For instance,
in Figure 1, we illustrate the update routes of ADAMwith β1 = 0.9 and β1 = 0.0 as the blue and red lines, respectively.
In Figure 1, the ellipse lines are the contour lines of f (x , y) , and points on the same line share the same function value.
We can observe that after the first updating, both of the two approaches will update variables to (−3, 0) point (i.e.,
the updated variable vector will be w1 = (−3, 0)>). In the second step, since the current gradient g2 = (−6, 0)>, the
ADAM with β1 = 0.0 will update variables in the (1, 0) direction. Meanwhile, for the ADAM with β1 = 0.9, its m2 is
computed by integrating m1 and g2 together (whose weights are β1 and 1 − β1, respectively). Therefore the updating
direction of it will be more inclined to the previous direction instead. Compared with ADAMwith β1 = 0.0, the ADAM
with β1 = 0.9 takes much more iterations until converging.

From the analysis above, we can observe that a careful tuning and updating of β1 in the learning process can be
crucial for the performance of ADAM. However, by this context so far, there still exist no effective approaches for
guiding the parameter tuning yet. To deal with this problem, DEAM introduces the concept of discriminative angle θ
for computing β1 automatically as follows.

8 Bai & Ren et al.

3.1.2 | Mechanism
The momentum weight β1 will be updated in each iteration in DEAM, and we can denote its value computed in the
t t h iteration as β1,t formally. Essentially, in the t t h iteration of the training process, both the previous update volume
and gt are vectors (or directions), and these directions directly decide the updating process. Thus we try to extract
their relation with the help of angle, and subsequently determine the weight β1,t (or 1 − β1,t) by the angle.

In Algorithm 1, the discriminative angle θ in the t t h iteration is calculated by

θ =

〈
− mt−1√v̂t−1 ,−gt

〉
=

〈 mt−1√v̂t−1 , gt
〉

(8)

Here, the operator 〈·, ·〉 denotes the angle between two vectors (the angle is calculated according to the cosine
similarity). This expression is easy to understand, since the −mt−1/

√v̂t−1 can represent the updating direction of
(t − 1)t h iteration in AMSGrad, meanwhile −gt is the reverse of the present gradient. So we can simplify it as θ =<
mt−1√v̂t−1 , gt >. If θ is close to zero (denoted by θ → 0◦), the mt−1/

√v̂t−1 (previous update volume) and gt are almost in
the same direction, and the weights for them will not be very important. Meanwhile, if θ approaches 180◦ (denoted
by θ → 180◦), the previous update volume and gt will be in totally reverse directions. This means in the current step,
the previous momentum term is already in a wrong direction. Therefore, to rectify this error of the last momentum,
DEAM proposes to assign the current gradient’s weight (i.e., β1,t in our paper) with a larger value instead. As the β1,t
varies when θ changes from 0◦ to 180◦, we intend to define β1,t with the following equation:

β1,t =

sin θ/K + ε θ ∈ [0, π2)

1/K θ ∈ [π2 , π]
(9)

where K = 10(2 + π)/2π and ε is a very small value (e.g., ε = 0.001). In the equation above, the threshold of the
piecewise function is θ = π/2, because sin θ comes to the maximum at this point and goes down when θ > π

2 . If
π
2 ≤ θ ≤ π , which is exactly the situation θ → 180◦ we discussed above, we intend to keep β1,t in a relatively large
value. The reason we rescale sin θ by 1/K is that directly applying β1,t = sin θ will overweight gt , which may cause
fluctuations on the update routes. The value of K is determined by:

K =
10

π
(
∫ π

2

0
sin θdθ +

∫ π

π
2

1dθ) = 5(2 + π)
π

(10)

In the equation above, assume θ is randomly distributed on [0, π]. Here, we specify K = 5(2+π)
π in this calculation so

that we can get

Å[β1,t] =
1

π

∫ π

0
β1,t (θ)dθ = 0.1 (11)

In other words, the expectation of β1,t (i.e., Å(β1,t)) will be identical to the β1 used in ADAM paper [14]. After

Bai & Ren et al. 9

𝒘𝟎

𝒘𝟏

𝒘𝟐

𝒘𝟑

𝒘𝟒

𝒘𝟓

𝜽

(a) The "zig-zag" route

𝒙𝟏

𝒙𝟐
𝒚𝟏

𝒚𝟐
𝒘0

𝒘𝟏

𝒘2

(b) Axis decomposition

𝒘𝒕"𝟏

𝒇(𝒙)

𝒘𝒕

−𝒈𝒕

−
𝒎𝒕"𝟏

#𝒗𝒕"𝟏

𝒅𝒕(−
𝒎𝒕"𝟏

#𝒗𝒕"𝟏
)𝒘′𝒕

(c) Example: When θ = 180◦
F IGURE 2 Examples about dt . Figure 2(a) shows the update routes of a 2-dimension function. The θ in the figure
denotes the angle between the update direction from w0 to w1 and the update direction from w1 to w2; Figure 2(b)provides an example of the opposite axis directions in the update routes of Figure 2(a); Figure 2(c) demonstrates the
mechansim of the backtrack term dt .

obtaining β1,t , it will be applied to calculating mt as shown in Algorithm 1. In this way, we have achieved momentum
with adaptive weights, and this weight is automatically computed during the training process, fewer hyperparameters
will be involved.

3.2 | Backtrack Mechanism dt

To further speed up the convergence rate, we employ a novel backtrack mechanism for DEAM. As a mechanism
computed based on the discriminative angle θ, the backtrack term allows DEAM to eliminate redundant update in
each iteration. Besides, according to our following analysis, the backtrack term dt virtually collaborates with the β1,t
term to further accelerate the convergence of the training process.

3.2.1 | Motivation
When optimizer (e.g., ADAM) updates variables of the loss function (e.g., f (x , y)), some update routes will look like
the black arrow lines shown in Figure 2(a), especially when the discriminative angle θ is larger than 90◦. We call this
phenomenon the "zig-zag" route. In Figure 2(a), it shows the update routes of a 2-dimension function. Each black
arrow line in the figure represents the variables’ update in each epoch; the red dashed line is the direction of the
update routes; the θ is the discriminative angle. If θ ≥ 90◦, the "zig-zag" phenomenon will appear severely, which may
lead to slower convergence speed. The main reason is when θ ≥ 90◦, if we map two neighboring update directions
onto the coordinate axes, there will be at least one axis of the directions being opposite. This situation is shown in
Figure 2(b). For the example of a function with 2-dimension variables, the update volumem1/

√v̂1 can be decomposed
into (x1, y1)> in Figure 2(b), and the same with m2/

√v̂2. We can notice that y1 and y2 are in the opposite directions,
so the first and second steps practically have inverse updates subject to the y axis. We attribute this situation to
the over-update (or redundant update) of the first step. Therefore the backtrack term dt is proposed to restrict this
situation.

10 Bai & Ren et al.

3.2.2 | Mechanism
Since the redundant update situation is caused by over updating of the previous iteration, simply we intend to deal
with it through a backward step. Meanwhile, during the updating process of variables, not every step will suffer from
the redundant update: if θ → 0◦, the updating process becomes smooth, not like the situation shown in Figure 2(a).
Besides, from the analysis above we conclude that if θ ≥ 90◦, there will be at least one dimension involves the
redundant update. Thus, in the t t h iteration we quantify dt as the following equation:

dt = min{αd cos θ, 0} (12)
and we rewrite the updating term with backtrack in DEAM as

∆t = dt · ∆t−1 − ηt ·
mt√v̂t (13)

where θ is the discriminative angle, αd equals to 0.5 in our default setting, and ∆t is the updating term in Algorithm 1.
By designing dt in this way, when θ → 0◦, dt = 0 and there is no backward step, the updating term ∆t = −ηt · mt√v̂tis similar to AMSGrad; when θ → 180◦, dt equals to 0.5 cos θ and comes to the maximum value when θ = 180◦. In
Equation (12), cos θ is rescaled by αd , the reason of our default setting αd = 0.5 is that: in Figure 2(c), wt−1 and wt
are the variables updated by DEAM without dt term in the (t − 1)t h and t t h iterations respectively. If the backtrack
mechanism is implemented, in the (t + 1)t h iteration, since θ = 180◦, firstly dt = αd cos θ → −0.5 makes the backtrack
to the w′t point (the middle point of wt−1 and wt). Thus, this backtrack step allows the variable to further approach
the optima. For more complicated situations, since it is too hard to find the optimal αd value for every specific learning
tasks, we use the following expectation to set the default value of αd . In the t t h iteration, considering when θ → 180◦,
dt < 0 andw ′t should locate between thewt−1 andwt . As the optimal relative locate ofw ′t is unknow, we assume that
w ′t is randomly distributed between wt−1 and wt . Thus, the statistical expectation of the location of w ′t is the central
point between wt−1 and wt . In other words, dt should be -0.5 when θ → 180◦, and αd = 0.5 is the optimal choice
under our backtrack mechanism.

By implementing the backtrack term dt , DEAMcan combine it with the adaptivemomentumweight β1,t to achieve
the collaborating of them. For the situation of large discriminative angle (θ ≥ 90◦), both β1,t and dt in the current step
can make corrections to the last update. Since when θ ≥ 90◦, the last update is in conflict direction compared with the
current gradient, and β1,t will increase to allocate a large weight for the present gradient, which subsequently corrects
the previous step. Meanwhile, the dt will also conduct a backward step of to further rectify the last update.

3.3 | Theoretical Analysis
In this part, we give the detailed analysis on the convergence of our DEAM algorithm. According to [14, 31, 34, 33],
given an arbitrary sequence of convex objective functions f1 (w), f2 (w), . . . , fT (w) , we intend to evaluate our algorithm
using the regret function, which is denoted as:

R (T) =
T∑
t=1

[ft (wt) − ft (w∗)] (14)

Bai & Ren et al. 11

where w∗ is the globally optimal point. In the following Theorem 1, we will show that the above regret function is
bounded. Before proving the Theorem 1, there are some properties and lemmas as the pre-requisites.
Proposition 1 If a function f : Òd → Ò is convex, then [x , y ∈ Òd , [φ ∈ [0, 1], we have

f (φx + (1 − φ)y) ≤ φf (x) + (1 − φ)f (y)

Proposition 2 If a function f : Òd → Ò is convex, then [x , y ∈ Òd we have

f (y) ≥ f (x) + +f (x)> (y − x)

Lemma 1 Assume that the function ft has bounded gradients, ‖+ft (w) ‖∞ ≤ G∞. Letmt ,i represents the it h element ofmt

in DEAM, then themt ,i is bounded by

mt ,i ≤
(1 − ε0)G∞
K (1 − λ)

where ε0 and λ are defined in Theorem 1.
Proof Let gt = +ft (w) . According to the definition of mt ,i in our algorithm,

mt ,i =
t∑
j=1

β1,j

t−j∏
l=1

(1 − β1,t−l+1)gj ,i

≤ G∞
K

t∑
j=1

t−j∏
l=1

(1 − ε) ≤ G∞
K

t∑
j=1

(1 − ε0)λt−j

≤ (1 − ε0)G∞
K (1 − λ)

where K and ε are the terms in Algorithm 1.
For the following proof, gt := +ft (wt) and gt ,i will represent the it h element of gt ∈ Òd , and g1:t ,i = [g1,i , g2,i , . . . , gt ,i].

Theorem 1 Assume {ft }Tt=1 have bounded gradients ‖+ft (w) ‖∞ ≤ G∞ for all w ∈ Òd , all variables are bounded bywp −wq 2 ≤ D and
wp −wq ∞ ≤ D∞, [p, q ∈ {1, 2, . . . ,T }, ηt = η/

√
t , γ1 = (1 − ε0)/

√
β2 and satisfies γ1 < 1,

ε = 1 − (1 − ε0)λt−1, λ ∈ (0, 1) . Our proposed algorithm can achieve the following bound on regret:

R (T) ≤ D 2

ε0η

d∑
i=1

√
T v̂T ,i + (1 − ε0)2G∞D∞d

K (1 − λ)2ε0

+
η
√
1 + logT

2ε20 (1 − γ1)
√
1 − β2

d∑
i=1

g1:T ,i 2
Proof According to Proposition 2, for [t ∈ {1, 2, . . . ,T }, we have

ft (wt) − ft (w∗) ≤ +ft (wt)> (wt −w∗)
=

d∑
i=1

gt ,i (wt ,i −w∗i)

12 Bai & Ren et al.

From the definition of ∆t in the updating rule of DEAM, we know it is equal to multiplying the learning rate ηt in some
iterations by a number in [0.5, 1], which means wt+1 = wt − η̂t · mt√v̂t ; η̂t = µt · ηt , where µt ∈ [0.5, 1]. Thus if we firstfocus on the it h element of wt , we can get

(wt+1,i −w∗i)2 = (wt ,i −w∗i − η̂t · mt√v̂t)2 = (wt ,i −w∗i)2
−2η̂t (

(1 − β1,t)√v̂t ,i mt−1,i +
β1,t√v̂t ,i gt ,i) · (wt ,i −w∗i) + (η̂t · mt√v̂t)2

Then,
2η̂t ·

β1,t√v̂t ,i gt ,i (wt ,i −w∗i) = (wt ,i −w∗i)2 − (wt+1,i −w∗i)2
− 2η̂t ·

(1 − β1,t)√v̂t ,i mt−1,i · (wt ,i −w∗i) + η̂2t · m
2
t ,iv̂t ,i

So we can obtain

gt ,i (wt ,i −w∗i) =
√v̂t ,i
2η̂t β1,t

[(wt ,i −w∗i)2 − (wt+1,i −w∗i)2] (15)
+
(1 − β1,t)
β1,t

mt−1,i (w∗i −wt ,i) (16)
+ η̂t
2β1,t

·
m2
t ,i√v̂t ,i (17)

For the right part of (15) in the above formula, if we sum it from t = 1 to t = T ,
T∑
t=1

√v̂t ,i
2η̂t β1,t

[(wt ,i −w∗i)2 − (wt+1,i −w∗i)2]

≤ 1
ε0
{(w1,i −w∗i)2 ·

√v̂1,i
η1
+ . . .

+ (wT ,i −w∗i)2 (
√v̂T ,i
ηT

−
√v̂T −1,i
ηT −1

) }

≤ D
2

ε0η

√
T v̂T ,i

The first inequality is satisfied because of the v̂t = max{v̂t−1, vt } in Algorithm 1. For the (16) in the formula, if we
sum it from t = 1 to t = T ,

T∑
t=1

(1 − β1,t)
β1,t

mt−1,i (w∗i −wt ,i) ≤ (1 − ε0)G∞D∞K (1 − λ)ε0

T∑
t=1

(1 − β1,t)

≤ (1 − ε0)G∞D∞
K (1 − λ)ε0

T∑
t=1

(1 − ε) = (1 − ε0)G∞D∞
K (1 − λ)ε0

T∑
t=1

(1 − ε0)λt−1

≤ (1 − ε0)
2G∞D∞

K (1 − λ)2ε0

Bai & Ren et al. 13

The first inequality is according to Lemma 1. Finally, we will infer the (17) in previous formula. According to the
Lemma 2 of [31], we have

T∑
t=1

η̂t
2β1,t

·
m2
t ,i√v̂t ,i ≤ 1

2ε0

T∑
t=1

ηt
m2
t ,i√vt ,i ≤

η

2ε0

T∑
t=1

1
√
t
·
m2
t ,i√vt ,i

=
η

2ε0

T∑
t=1

(∑t
j=1 β1,j

∏t−j
l=1
(1 − β1,t−l+1)gj ,i)2√

t ((1 − β2)
∑t
j=1 β

t−j
2 g2

j ,i
)

≤ η

2ε0

T∑
t=1

(∑t
j=1 (1 − ε0)

t−j) (∑t
j=1 (1 − ε0)

t−j g2
j ,i
)√

t ((1 − β2)
∑t
j=1 β

t−j
2 g2

j ,i
)

≤ η

2ε20
√
1 − β2

T∑
t=1

∑t
j=1 (1 − ε0)

t−j g2
j ,i√

t (∑t
j=1 β

t−j
2 g2

j ,i
)

≤ η

2ε20
√
1 − β2

T∑
t=1

1
√
t

t∑
j=1

(1 − ε0) t−j g2j ,i√
β
t−j
2 g2

j ,i

≤ η

2ε20
√
1 − β2

T∑
t=1

|gt ,i |
T∑
j=t

γ
j−t
1√
t
≤

η
√
1 + logT

2ε20 (1 − γ1)
√
1 − β2

g1:T ,i 2
In the above inequalities, some inferences are based on Cauchy-Schwarz Inequality. Therefore, the final bound of
R (T) can be expressed as

R (T) ≤ D 2

ε0η

d∑
i=1

√
T v̂T ,i + (1 − ε0)2G∞D∞d

K (1 − λ)2ε0

+
η
√
1 + logT

2ε20 (1 − γ1)
√
1 − β2

d∑
i=1

g1:T ,i 2
For the bound term, as T → +∞, R (T)T → 0 and we can infer that lim

T→∞
[ft (wt) − ft (w∗)] = 0, which means the

proposed algorithm can finally converge.

4 | EXPERIMENTS
We have applied the DEAM algorithm on multiple popular machine learning and deep learning structures, including
logistic regression, deep neural networks (DNN), convolutional neural networks (CNN), graph convolutional networks
(GCN), and recurrent neural networks (RNN). These structures cover both convex and non-convex situations. Through
experiments, we demonstrate that DEAM has universal advantages for different types of machine learning structures.
Below we introduce the experimental results in detail for each learning structure.

4.1 | Comparison Algorithms
To show the advantages of the algorithm, we compare it with various popular optimization algorithms.

• DEAM: DEAM is the proposed algorithm in this paper.

14 Bai & Ren et al.

0 25 50 75 100 125 150 175 200
iterations over entire dataset

0

25

50

75

100

125

150

175

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(a) Train loss on ORL
0 25 50 75 100 125 150 175 200
iterations over entire dataset

0
20
40
60
80

100
120
140
160

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(b) Test loss on ORL

F IGURE 3 The optimization process of Logistic Regression

0 2 4 6 8 10
iterations over entire dataset

0.1

0.2

0.3

0.4

0.5

0.6

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(a) Train loss on MNIST
0 2 4 6 8 10
iterations over entire dataset

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(b) Test loss on MNIST

F IGURE 4 The optimization process of the DNN structure

• DEAM without dt : We remove the backtrack mechanism from DEAM in order to verify the effectiveness of dt
by ablation study.

• ADAM [14]: ADAM is an algorithm for first-order gradient-based optimization based on adaptive estimates of
lower-order moments. But the momentum is controlled by hypermeters (i.e., β1 and β2).

• RMSProp [22]: RMSprop belongs to the realm of adaptive learning rate algorithms.
• AdaGrad [12]: AdaGrad adapts the learning rate to the parameters, which strategy is setting low learning rates

for parameters associated with frequently occurring features but high learning rates for parameters associated
with infrequent features.

• SGD [9]: SGD performs a parameter update for each training example, which lead to more frequent parameter
update but more fluctuated objective function.

To ensure fairness, we use the same parameter initialization when testing each optimization method and fine-
tune the hyperparameters (e.g., learning rate, decay weight) of each optimization method and report the best results.
The experimental device is a Dell PowerEdge T630 Tower Server, with 80 cores 64-bit Intel Xeon CPU E5-2698
v4@2.2GHz. The total memory is 256 GB, with an extra (SSD) swap of 256 GB. The operating system is Ubuntu
16.04.3, and all codes are implemented in Python.

Bai & Ren et al. 15

0 20 40 60 80 100
iterations over entire dataset

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(a) Train loss on ORL
0 20 40 60 80 100

iterations over entire dataset

0.5

1.0

1.5

2.0

2.5

3.0

3.5

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(b) Test loss on ORL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iterations over entire dataset

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(c) Train loss on MNIST
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

iterations over entire dataset

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(d) Test loss on MNIST

0 2 4 6 8 10 12 14 16 18
iterations over entire dataset

1.4

1.6

1.8

2.0

2.2

2.4

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(e) Train loss on CIFAR
0 2 4 6 8 10 12 14 16 18

iterations over entire dataset

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(f) Test loss on CIFAR

F IGURE 5 The optimization process of CNN structure

4.2 | Experiments in Logistic Regression

We firstly evaluate our algorithm on the multi-class logistic regression (LR) model since it is widely used and owns a
convex objective function [14]. We conduct logistic regression on the ORL dataset [35]. During the training process,
the minibatch size is 128, and the learning rate is 0.0001. ORL dataset consists of face images of 40 people, each
person has ten images, and each image is in the size of 112 × 92. The loss of objective functions on both the training
set and testing set are shown in Figure 3. From the figure, it can be found that DEAM has obtained the fastest
convergence rate with apparent advantages and converges to the global minimum. From the running time listed in
Table 3, the optimization time required for DEAM is also the shortest, which shows that the additional overhead
brought by the adaptive momentum and backtrack mechanism in DEAM is worthwhile for the overall running time
improvement.

16 Bai & Ren et al.

0 10 20 30 40 50
iterations over entire dataset

4

5

6

7

8

9

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(a) RNN Train loss on Reddit

0 10 20 30 40 50
iterations over entire dataset

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(b) RNN Test loss on Reddit

0 200 400 600 800 1000
iterations over entire dataset

0
25
50
75

100
125
150
175
200

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(c) LSTM Train loss on MNIST

0 200 400 600 800 1000
iterations over entire dataset

0
25
50
75

100
125
150
175
200

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(d) LSTM Test loss on MNIST

F IGURE 6 The optimization process of the recurrent neural ntwork structures

4.3 | Experiments in Deep Neural Networks
We use a deep neural network (DNN) with two fully connected layers of 64 hidden units and the Relu [36] activation
function. The dataset we use is MNIST [4]. The MNIST dataset includes 60,000 training samples and 10,000 testing
samples, where each sample is a 28× 28 image of hand-written numbers from 0 to 9. The minibatch size is set as 128,
and the learning rate is 0.0001. Results are exhibited in Figure 4, which shows DEAM achieves the best convergence
performance. Besides, DEAM requires the least running time (50% running time compared with ADAM) to finish the
optimization process in Table 3.

4.4 | Experiments in Convolutional Neural Networks
The CNN model in our experiments is based on the LeNet-5 [4]. We test it on multiple datasets: ORL, MNIST, and
CIFAR-10 [37]. The CIFAR-10 dataset consists of 60,000 32 × 32 images of 10 classes, with 6,000 images per class.
For different datasets, the structures of CNN models are modified: for the ORL dataset, the CNN model has two
convolutional layers with 16 and 36 feature maps of 5 kernels and 2 max-pooling layers, and a fully connected layer
with 1024 neurons; for the MNIST dataset, the CNN structure follows the LeNet-5 structure in [4]; for CIFAR-10
dataset, the CNN model consists of three convolutional layers with 64, 128, 256 kernels respectively, and a fully
connected layer having 1024 neurons. All experiments apply Relu [36] activation function, and the minibatch size
is set as 128 together with the learning rate of 0.0001. From the results shown in Figure 5, DEAM can converge

Bai & Ren et al. 17

TABLE 3 Running time of DEAM and comparison methods (the unit of values is second)
Comparison
Methods

Running time on all models
LR

on ORL
DNN

on MNIST
CNN

on ORL
CNN

on MNIST
CNN

on CIFAR-10
GCN

on Cora
GCN

on Citeseer
RNN

on Reddit
LSTM

on MNIST
ADAM [14] 102 664 47418 21775 67584 20 24 > 10000 212.58

RMSProp [22] 48 307 36722 11997 84305 15 22 > 10000 > 5000

AdaGrad [12] > 200 667 > 100000 > 50000 > 100000 > 50 > 100 7172.81 286.72
SGD [9] > 200 346 > 100000 16985 67564 > 50 > 100 > 10000 223.83
DEAM 38 302 35064 11679 57761 6.22 7.58 5356.99 208.79

to optimum faster in a smoother process. All three datasets demonstrate the same advantage. The running time of
DEAM on three datasets is less than other optimization methods as well. Through the comparison between DEAM
and DEAM without dt term, we observe that the performance improvement brought by the backtrack mechanism is
evident, which verifies that the backtrack mechanism proposed in DEAM is critical for optimizing the CNN model.

4.5 | Experiments in Recurrent Neural Networks
To evaluate the performance of DEAM in recurrent neural network structures, we employ two kinds of structures (i.e.,
basic RNN and LSTM) to implement experiments.

We use the basic Recurrent Neural Networks (RNN) model structure firstly. The hidden size is 100, and the
vocabulary size is set as 8,000. During the training process, the training batch size is 128. The experiment is run
on Reddit dataset 1, which collects real comments from the Reddit website. We sample 2,000 sentences from the
dataset as the training set and 200 sentences as the test set. The basic RNN is trained to work on text generation
tasks. From Figure 6(a)-6(b), we can observe that DEAM can converge to a lower position with a higher rate compared
with other optimization algorithms. The backtrack mechanism (i.e., dt) significantly enhanced model performance in
this experiment.

The other recurrent neural network structure we run in the experiment is the Long Short Term Memory (LSTM)
model. Here, we implement the LSTM model on the MNIST dataset to classify the image. As the MNIST dataset
images have a size 28 × 28, each row of the images is considered a word, and each image can be transferred to a
sentence with 28 words (rows). In our experiment, the hidden size of LSTM is 128, and the learning rate is 0.001.
From Figure 6(c)-6(d), DEAM, ADAM, and SGD can achieve comparable performance which beats the results from
RMSProp and AdaGrad.

4.6 | Experiments in Graph Convolutional Networks
Graph Neural Networks [38, 39, 40, 41, 42] are deep models to serve tasks involving graph-structured data. In this
paper, we evaluate the proposed algorithms on the Graph Convolutional Networks (GCN) structure in [39] on Cora
and Citeseer datasets [43]. The Cora dataset contains 2708 nodes from 7 classes and 1433 features per node. The
Citeseer dataset has 3327 nodes, 3703 features per node, and nodes belong to 6 classes. GCN works on the node

1https://www.kaggle.com/nursen/redditcomments

18 Bai & Ren et al.

0 25 50 75 100 125 150 175 200
iterations over entire dataset

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(a) Train loss on Cora
0 25 50 75 100 125 150 175 200

iterations over entire dataset

0.8

1.0

1.2

1.4

1.6

1.8

2.0

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(b) Test loss on Cora

0 5 10 15 20 25 30
iterations over entire dataset

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

tra
in

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(c) Train loss on Citeseer
0 5 10 15 20 25 30

iterations over entire dataset
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

te
st

 lo
ss

SGD
AdaGrad
RMSProp
ADAM
DEAM
DEAM without dt

(d) Test loss on Citeseer

F IGURE 7 The optimization process of GCN structure

classification task, and the loss function (objective function) we have selected is the cross-entropy loss function. All
other experimental details (e.g., training/test ratio) follow the settings in [39]. The learning rate is 0.01 for GCN
optimization. The results are shown in Figure 7. We can observe that DEAM converges faster than other widely used
optimization algorithms in all the cases. Within the same number of epochs, DEAM can converge to the lowest loss
on both the training set and test set.

4.7 | Analysis of the Backtrack Mechanism

To show the effectiveness of the backtrack term dt , we carry out the ablation study of DEAM without dt term, and
exhibit the results from Figures 4 to Figures 7. The results indicate that after applying dt term, the converging speed
becomes faster for most of the neural network structures. To thoroughly prove the effectiveness of our proposed dt
term, we compare it with other definitions of backtrack terms e.g., dt = 0.5 cos θ, and present the results in Figure 8.
In Figure 8, dt = si gmoi d_based represents that dt = −1/(1 + e−(θ− 12 π)) + 1

2 , and dt = t anh_based means that
dt = −2/(1 + e−2(x−

1
2 π)) + 1. Due to the limited space, here we only exhibit the results of the logistic regression on

the ORL dataset. The experimental results of other machine learning structures on different datasets are consistent.
The results in Figure 8 demonstrate that the designed dt in DEAM is effective and can achieve the best convergence
performance.

Bai & Ren et al. 19

0 20 40 60 80 100
iterations over entire dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tra
in

los
s

dt in DEAM
dt = 0.5 cos
dt = sigmoid_based
dt = tanh_based

F IGURE 8 Comparison between various designed dt terms

4.8 | Time-consuming Analysis
We have recorded the running time of DEAM and other comparison algorithms in every experiment and list them in
Table 3. The running time shown in Table 3 contains “>”, which means the model still does not converge at the specific
time. From the results, we can observe that in all of our experiments, DEAM finally converges within the smallest
amount of time. From the results from Figures 4 to Figures 7 and Table 3, we can conclude that DEAM can converge
not only in fewer epochs, but costing less running time. The results in Table 3 also show that the computational cost of
the proposed adaptive learning rate and the backtrack mechanism is worthwhile compared to the faster convergence
speed they bring because the total running time required is shorter.

5 | FUTURE EXPLORATION
Based on the current version of DEAM algorithm, there are still some directions that can be further improved: 1) the
second-order momentumweight β2 in DEAM is a fixed hyperparameter under our design. Such design may not be the
ideal solution for different neural networks optimization tasks, thus we expect to propose an adaptive β2 in the future
work; 2) according to Eqaution 3.2.2, our proposed backtrack term dt is computed by dt = min{0.5 cos θ, 0}. Here,
the 0.5 is also a hyperparameter for the dt computation. To further eliminate redundant update in the optimization
process, this hyperparameter can be specified before the optimization process. For example, we can sample a subset
of the training data to grid-search the optimal hyperparameter for the current model optimization task.

6 | CONCLUSION
In this paper, we have introduced a novel optimization algorithm, the DEAM, which implements the momentum with
discriminative weights and the backtrack term. We have analyzed the advantages of the proposed algorithm and
proved it by theoretical inference. Extensive experiments have shown that the proposed algorithm can converge
faster than existingmethods by almost 50 percent on both convex and non-convex situations, and the time consuming
is better than existing methods: the time consuming of DEAM is only half of the most widely used optimizers SGD
and ADAM on average. Not only the proposed algorithm can outperform other popular optimization algorithms, but
fewer hyperparameters will be introduced, which makes the DEAM much more applicable.

20 Bai & Ren et al.

References
[1] He K, Zhang X, Ren S, and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2016. p. 770–778.
[2] Krizhevsky A, Sutskever I, and Hinton GE. Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems. 2012;25:1097–1105.
[3] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings

of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.
[4] LeCun Y, Bottou L, Bengio Y, and Haffner P. Gradient-based learning applied to document recognition. Proceed-

ings of the IEEE. 1998;86(11):2278–2324.
[5] Dong L, Wei F, Zhou M, and Xu K. Question answering over freebase with multi-column convolutional neural

networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing; 2015. p. 260–269.

[6] Bahdanau D, Cho K, and Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:14090473. 2014;.

[7] Neumann M, and Vu NT. Attentive Convolutional Neural Network Based Speech Emotion Recognition: A Study
on the Impact of Input Features, Signal Length, and Acted Speech. Proc Interspeech 2017. 2017;p. 1263–1267.

[8] Zhang J. Graph neural networks for small graph and giant network representation learning: An overview. arXiv
preprint arXiv:190800187. 2019;.

[9] Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:160904747. 2016;.
[10] Qian N. On themomentum term in gradient descent learning algorithms. Neural networks. 1999;12(1):145–151.
[11] Sutskever I, Martens J, Dahl G, andHintonG. On the importance of initialization andmomentum in deep learning.

In: International conference on machine learning. PMLR; 2013. p. 1139–1147.
[12] Duchi J, Hazan E, and Singer Y. Adaptive subgradient methods for online learning and stochastic optimization.

Journal of machine learning research. 2011;12(7).
[13] Zeiler MD. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:12125701. 2012;.
[14] Kingma DP, and Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.
[15] Bianchi P, and Jakubowicz J. Convergence of a multi-agent projected stochastic gradient algorithm for non-

convex optimization. IEEE transactions on automatic control. 2012;58(2):391–405.
[16] Reddi SJ, Hefny A, Sra S, Poczos B, and Smola A. On variance reduction in stochastic gradient descent and its

asynchronous variants. arXiv preprint arXiv:150606840. 2015;.
[17] Roux NL, Schmidt M, and Bach F. A stochastic gradient method with an exponential convergence rate for finite

training sets. arXiv preprint arXiv:12026258. 2012;.

Bai & Ren et al. 21

[18] Shalev-Shwartz S, and Zhang T. Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization.
Journal of Machine Learning Research. 2013;14(2).

[19] Johnson R, and Zhang T. Accelerating stochastic gradient descent using predictive variance reduction. Advances
in neural information processing systems. 2013;26:315–323.

[20] Defazio A, Bach F, and Lacoste-Julien S. SAGA: A fast incremental gradientmethodwith support for non-strongly
convex composite objectives. arXiv preprint arXiv:14070202. 2014;.

[21] Behera L, Kumar S, and Patnaik A. On adaptive learning rate that guarantees convergence in feedforward net-
works. IEEE transactions on neural networks. 2006;17(5):1116–1125.

[22] Tieleman T, and Hinton GE. Leture 6.5 RMSProp,COURSERA: Neural Networks for Machine Learning. In: Tech-
nical report; 2012. .

[23] Dauphin YN, De Vries H, and Bengio Y. Equilibrated adaptive learning rates for non-convex optimization. arXiv
preprint arXiv:150204390. 2015;.

[24] Luo L, Xiong Y, Liu Y, and Sun X. Adaptive gradient methods with dynamic bound of learning rate. arXiv preprint
arXiv:190209843. 2019;.

[25] Li Q, Zhou Y, Liang Y, and Varshney PK. Convergence analysis of proximal gradient with momentum for noncon-
vex optimization. In: International Conference on Machine Learning. PMLR; 2017. p. 2111–2119.

[26] Dozat T. Incorporating nesterov momentum into adam. 2016;.
[27] Mitliagkas I, Zhang C, Hadjis S, and Ré C. Asynchrony begets momentum, with an application to deep learning.

In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE; 2016.
p. 997–1004.

[28] Nesterov Y. A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). In:
Doklady ANUSSR; 1983. .

[29] Zhang Z, Ma L, Li Z, and Wu C. Normalized direction-preserving adam. arXiv preprint arXiv:170904546. 2017;.
[30] Keskar NS, and Socher R. Improving generalization performance by switching from adam to sgd. arXiv preprint

arXiv:171207628. 2017;.
[31] Reddi SJ, Kale S, and Kumar S. On the convergence of adam and beyond. arXiv preprint arXiv:190409237. 2019;.
[32] Bai J, Ren Y, and Zhang J. Deam: Adaptive momentum with discriminative weight for stochastic optimization.

In: 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE; 2020.
p. 37–41.

[33] Chen X, Liu S, Sun R, and Hong M. On the convergence of a class of adam-type algorithms for non-convex
optimization. arXiv preprint arXiv:180802941. 2018;.

[34] Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of the
20th international conference on machine learning; 2003. p. 928–936.

22 Bai & Ren et al.

[35] Samaria FS, andHarter AC. Parameterisation of a stochastic model for human face identification. In: Proceedings
of 1994 IEEE workshop on applications of computer vision. IEEE; 1994. p. 138–142.

[36] Nair V, and Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the
27th international conference on machine learning; 2010. .

[37] Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. 2009;.
[38] Defferrard M, Bresson X, and Vandergheynst P. Convolutional neural networks on graphs with fast localized

spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Sys-
tems; 2016. p. 3844–3852.

[39] Kipf TN, and Welling M. Semi-supervised classification with graph convolutional networks. In: ICLR; 2017. .
[40] Veličković P, Cucurull G, Casanova A, Romero A, Lio P, and Bengio Y. Graph attention networks. arXiv preprint

arXiv:171010903. 2017;.
[41] Hamilton WL, Ying R, and Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the

31st International Conference on Neural Information Processing Systems; 2017. p. 1025–1035.
[42] Bai J, Ren Y, and Zhang J. RippleWalk Training: A Subgraph-based training framework for Large and Deep Graph

Neural Network. In: IJCNN; 2021. .
[43] Sen P, Namata G, Bilgic M, Getoor L, Galligher B, and Eliassi-Rad T. Collective classification in network data. AI

magazine. 2008;29(3):93–93.

Jiyang Bai received the bachelor degree in information and numerical science from Nankai Uni-
versity, China, in 2018. He is pursuing a PhD degree in the Department of Computer Science
at the Florida State University. His main research areas are data mining and machine learning,
especially focus on the graph mining, graph neural networks, graph similarity search.

Yuxiang Ren received the bachelor degree in software engineering and the bachelor degree in
law from Nanjing University, China, in 2015, and the Ph.D. degree in Computer Science from
Florida State University in 2021. His main research areas are data mining and machine learn-
ing, especially focus on the development and analysis of algorithms for social and information
networks, as well as heterogeneous graph mining and fake news detection.

Jiawei Zhang received the bachelor’s degree in computer science fromNanjingUniversity, China,
in 2012, and the Ph.D. degree in computer science from the University of Illinois at Chicago,
USA, in 2017. He has been an Assistant Professor with the Department of Computer Science,
Florida State University, Tallahassee, FL, USA, since 2017. He founded IFM Lab in 2017, and

Bai & Ren et al. 23

has been working as the director since then. IFM Lab is a research oriented academic labora-
tory, providing the latest information on fusion learning and data mining research works and application tools to
both academia and industry.

