
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

Measuring and Sampling: A Metric-guidedSubgraph Learning Framework for Graph NeuralNetwork
Jiyang Bai1* | Yuxiang Ren2* | Jiawei Zhang3
1Department of Computer Science, Florida
State University, Tallahassee, Florida,
32306, USA. Email: bai@cs.fsu.edu
2IFM Lab, Department of Computer
Science, Florida State University,
Tallahassee, Florida, 32306, USA. Email:
yuxiang@ifmlab.org
3IFM Lab, Department of Computer
Science, University of California, Davis,
Davis, California, 95616, USA. Email:
jiawei@ifmlab.org
Correspondence
Yuxiang Ren, IFM Lab, Department of
Computer Science, Florida State University,
Tallahassee, Florida, 32306, USA
Email: yuxiang@ifmlab.org
Funding information
National Science Foundation, Grant
Number: IIS-1763365

Graph neural networks (GNNs) have shown convincing per-
formance in learning powerful node representations that
preserve both node attributes and graph structural infor-
mation. However, many GNNs encounter problems in ef-
fectiveness and efficiency when they are designed with a
deeper network structure or handle large-sized graphs. Sev-
eral sampling algorithms have been proposed for improv-
ing and accelerating the training of GNNs, yet they ignore
understanding the source of GNNs performance gain. The
measurement of informationwithin graph data can help the
sampling algorithms to keep high-value information while
removing redundant information and even noise. In this
paper, we propose a Metric-Guided (MeGuide) subgraph
learning framework forGNNs. MeGuide employs twonovel
metrics: Feature Smoothness andConnection FailureDistance
to guide the subgraph sampling and mini-batch based train-
ing. Feature Smoothness is designed for analyzing the fea-
ture of nodes in order to retain the most valuable infor-
mation, while Connection Failure Distance can measure the
structural information to control the size of subgraphs. We
demonstrate the effectiveness and efficiency of MeGuide

*Should be considered joint first author

1

2 Bai & Ren et al.
in training various GNNs on multiple datasets.
K E YWORD S
Graph Neural Network; Subgraph Sampling; Training
Optimization;

1 | INTRODUCTION
In recent years, graph neural networks (GNNs) have progressed in graph representation learning. Numerous real-
world graph-related applications, such as social media [1], fake news detection [2] and knowledge graphs [3], exhibit
the favorable property of graph neural networks. The core idea of GNN is to aggregate the feature information of
the nodes’ neighbors through neural networks to update node representations, which combine both the independent
information of the nodes and corresponding structural information. As the scale of the graph increases and the GNN
model architecture goes deeper, several challenging problems will emerge in learning GNNs: neighbors explosion, node
dependence, and oversmoothing [4]. GNNs learn high-level representations through a recursive neighbors aggregation
scheme [5], which causes the number of neighbors to explode. This problem is described as neighbors explosion [4],
which leads to exponentially-growing computation complexity. Because neighboring nodes are interdependent in the
learning process, most current GNNs have to work based on the full graph. This limitation is the node dependence as
described in [6], which brings out serious memory and computation bottlenecks in handling large-sized graphs. At last,
when GNNs go deeper and learn on the full graph, node representations from different clusters will be aggregated [7],
which contradicts the smoothness assumptions (close nodes are similar). This oversmoothing issue can lead to learned
node representations indistinguishable [8, 9].

Several sampling-based methods have been proposed to deal with the aforementioned problems. Among them,
one direction is the node-sampling method [10, 11, 12, 13, 9]. GraphSAGE [10] samples features from local node
neighborhoods to learn a function that updates node representations. The neighborhoods sampling can mitigate
the harassment from neighbors explosion and node dependence. DropEdge [9] randomly removes some edges from
the input graphs, which is a kind of node-sampling essentially, to overcome the oversmoothing. However, for large-
sized graphs, even if neighboring nodes are sampled, it is still difficult to avoid loading the full graph during training,
which brings huge memory overhead. At the same time, the node-sampling methods focus on sampling distribution
(e.g., importance sampling [13]) to reduce the high-level approximation variance, but such sampling cannot precisely
quantify the information gain from each node.

The other direction is the graph-sampling method [6, 14, 4], which can deal with the memory overhead from
loading the full graph. Cluster-GCN [6] constructs the subgraph mini-batches by clustering on the full graph to train
the GCN. However, the clustering algorithm itself is greatly affected by the structure of the full graph, that is, the
size of the clustered subgraph is uncontrollable. As a heuristic method, Cluster-GCN is difficult to guarantee the
generalization performance of graph data with different structures. Unlike Cluster-GCN, GraphSAINT [14] constructs
mini-batches by sampling subgraphs with the support of several random samplers. RippleWalk [4] proposes a training
framework together with the ripple walk sampler to consider randomness and connectivity of sampled subgraphs.
Graph-sampling methods using subgraphs to train GNNs can handle the three problems mentioned above simultane-
ously to a certain extent but only focus on the training phase of GNN models. GraphSAINT and RippleWalk still need
to load the full graph when using the trained model to make predictions, which challenges the memory space. What is
more, current graph-sampling methods along with their samplers are limited in understanding the source of informa-

Bai & Ren et al. 3
tion gains and noise when GNNs are trained. In fact, the understanding of information gain and noise can effectively
help graph-sampling methods to obtain higher quality subgraphs that are the key to the training performance.

In this paper, we propose a general learning framework, namelyMetric-Guided (MeGuide), for graph neural net-
works. MeGuide is a mini-batch based learning framework that can help GNNs learn on sampled subgraphs instead
of the full graph. The full GNN is trained and updated based on the mini-batch gradient. MeGuide employs a novel
MeGuide Sampler to sample subgraphs for the mini-batch, whose sampling logic is mainly based on the two novel
metrics we introduce in this paper: Feature Smoothness and Connection Failure Distance. In subgraph sampling, the
node selection and the size of the subgraph are two important factors that determine the shape of the subgraph. For
node selection, the existing methods [9, 14] randomly sample neighbors and ignore the information provided by node
feature vectors. Feature Smoothness measures the information gain from node features, which is used by MeGuide
Sampler to select nodes with more information and drop nodes with redundant information during the subgraph sam-
pling process. In addition, according to the basic assumption on the graph structure data, the closer the nodes are,
the more similar and the more likely they are to have the same label. It is reasonable to consider that neighbors with
different labels contribute to negative disturbance [15]. When the distance between nodes exceeds a certain met-
ric, there is a greater probability for the sampled nodes to have different labels. This metric we define in this paper
is Connection Failure Distance, which is utilized by MeGuide Sampler to control the longest multi-hop connection in
subgraphs. In this way, MeGuide can help GNNs avoid unexpected aggregations (e.g., aggregating nodes with differ-
ent labels), which is the primary cause of oversmoothing [4]. To a certain extent, the size of subgraphs can also be
determined, but in other sampling methods, it is a hyper-parameter. With the understanding of information gains and
disturbance during sampling subgraphs, MeGuide can help the training of GNNmodels to achieve better performance
in both effectiveness and efficiency. In addition, for how to apply trained GNN models to perform prediction tasks
based on subgraphs, MeGuide proposes a representation aggregation-based scheme so that it is no longer necessary
to load the full graph in the prediction phase.

The contributions of our work are summarized as follows:

• We define two metrics Feature Smoothness and Connection Failure Distance based on the smoothness of node
features and the connectivity of graphs respectively to measure the quantity and quality of information gain
between nodes.

• We propose a general learning framework MeGuide for different GNN models. MeGuide samples high-value
subgraphs guided by Feature Smoothness and Connection Failure Distance to train GNN models.

• For the case of the memory bottleneck when using learned GNN models to make predictions on a single large
graph, MeGuide employs the representation aggregation-based prediction on subgraphs, which is an unconsid-
ered problem left by existing graph-sampling training methods.

• We conduct extensive experiments on 5 benchmark graph datasets with different sizes to demonstrate both the
effectiveness and efficiency of MeGuide. The results show the superiority of MeGuide subject to the training
efficiency and the performance of prediction.

The remaining paper is organized as follows. We review the related works in Section 2. Then we introduce
preliminaries and background in Section 3. The proposed framework MeGuide is introduced in Section 4, whose
effectiveness is evaluated in Section 5. Finally, we conclude this paper in Section 6.

4 Bai & Ren et al.
2 | RELATED WORK
2.1 | Graph Neural Network
Graph neural networks (GNNs) aim at the machine learning tasks involving graph-structured data. Bruna et al. [16]
express the idea of graph information construction based on the theorem of the spectrum of the graph Laplacian.
Later, spatial-based GNNs [17, 18] define graph convolutions directly based on a node’s spatial relations. Different
from the spectral-based GNNs, where the weights of edges in the graph have been determined before the training,
the connections (edges) between nodes and the weights of connections can be automatically learned in the training
process. For example, GAT [17] applies the attention mechanism to learn the attention weights for edges in each
training epoch. Nonetheless, both the spectral-based and spatial-based GNNs can be regarded as an information
propagation-aggregation mechanism, and such mechanism is achieved by the connections and multi-layers structure.
As a popular research topic, there have been many GNNs [19, 10, 20, 21, 22, 23] showing awe-inspiring capabilities
in handling graph structure data. More progress on graph neural networks can be referred to the surveys [24, 25].

2.2 | Optimization in GNN
Many GNNs are limited by the problems from three aspects: node dependence, neighbors explosion, and oversmoothing.
In response to these problems, some related works have been proposed from different directions.

2.2.1 | Node Dependence
Node dependence [6] forces GNNs to be trained on the full graph, which leads to slow training process. To deal with
such problem, The works [6, 14] apply the concept of subgraph training methods. The essence of subgraph training is
to collect a batch of subgraphs from the full graph and use them during the training process. The subgraph collecting
strategies can be various within different methods. Chiang et al. [6] divide the full graph into subgraphs according
to the clustering results. Training GNNs by clustered subgraphs can avoid unexpected aggregations from different
clusters, but the size of clustered subgraphs is uncontrollable. More importantly, the subgraphs sampled by clustering
share no joint node, thus the connection information within the full graph will be partly discarded. Another work
in [14] applies several subgraph sampling ideas (e.g., on the node, edge, random walk) when training the GCN for
inductive tasks. There are also other approaches to optimize the GNNs frameworks. [26, 19, 27, 28] optimize the
localized filter in order to reduce the time cost of training on the full graph. Further, [29, 30] reduce the number of
learnable parameters by dimensionality reduction and residual graph laplacian respectively. But these approaches do
not alleviate the space complexity problem.

2.2.2 | Neighbors Explosion
Neighbors explosion makes deep GNNs difficult to being implemented. Because learning a single node requires em-
beddings from its neighbors, and the quantity may be explosive when a GNN goes deeper. Some research works deal
with neighbors explosion by neighbors sampling [10, 11, 31, 12]. GraphSAGE [10] proposes to sample neighbors when
aggregating information for every node. FastGCN [11] regards the neighbors following specific distribution, and then
does neighbor sampling on the distribution level. VR-GCN [12] conducts the neighbors sampling with variance reduc-
tion for each node. In other directions, several models [32, 33, 34] select specific neighbors based on defined metrics

Bai & Ren et al. 5
to avoid the explosive quantity. In [35, 36, 37, 38], the propagation-aggregation mechanism is optimized to enable the
node to capture long-distance information even with a relatively shallow structure. DropEdge [9] randomly remove
edges from input graphs to handle the neighbor explosion. The above related works all focus on the neighbor-level
sampling but still have the same space complexity with original GNNs.

2.2.3 | Oversmoothing
The problemof oversmoothing in GNNswas introduced in [8]. WhenGNNs go deep, the performance suffers from over-
smoothingwhere node representations fromdifferent clusters becomemixed up [7]. The node information propagation-
aggregation mechanism can be regarded as one type of random walk within the graph. With the increasing of walking
steps, the node representations will finally converge to a stable status. Such convergence would impede the per-
formance of GNNs and make the nodes indistinguishable in the downstream tasks. Some related works have been
proposed to deal with the oversmmothing. GResNet [39] comes up with the suspended animation and utilizes the
residual networks to mine the advantages of deeper networks. In such a case, the depth of GNN models can reach
more than fifty with a better performance.

Till now, the optimized methods based on subgraph learning are limited [14, 6, 4]. Their measurement of the
quality of sampled subgraphs is not comprehensive enough, and the sampling of subgraphs is precisely the key to
this type of method. In this paper, we propose a subgraph learning framework MeGuide for GNNs, which employs
two novel metrics: Feature Smoothness and Connection Failure Distance to guide the subgraph sampling and mini-batch
based training. High-quality subgraphs can ultimately help MeGuide to better empower different GNNs learning.

3 | PRELIMINARIES AND BACKGROUND
In this section, we first introduce the preliminaries about general GNN models. Then we elaborate the basic idea of
subgraph-based training for GNN models.

3.1 | General GNNModels
We denote a graph as G = (V, E) , where V and E represent the set of nodes and edges of G respectively. Most
widely used GNN mdoels (e,g, GAT [17], GCN [19], GIN [5]) follow the recursive neighbors aggregation scheme to
update the representation for each node. For node vi , we use Nvi = {vj : evi ,vj ∈ E} to represent the set of its
neighbors, where evi ,vj denotes the edge between vi and vj . Each node has an initial feature vector xv ∈ Òd with
dimension d . The initial feature matrix X ∈ Ò|V|×d is consitute of all nodes’ initial feature vectors. The neighbors
aggregation scheme of GNN models can be represented generally as:

H(0) = X
H(l+1)vi

= σ (
∑
j ∈Nvi

αi j · H(l)vj W(l)) (1)

Here, H(0) is the input feature matrix of a GNN model, and the H(l)vj is the hidden representation of node vj in the l t h
layer; σ is an activation function; W(l) is the learnable parameter matrix for linear transformation; α is a variant of
cofficient matrix, which has different definitions according to different GNNmodels. For example, in GCN [19], α = Ã
is the normalized adjacency matrix. When in GAT [17], α is the attention weights matrix learned in current round.

6 Bai & Ren et al.
Through the feedforward layer computing, the hidden representation of node vi is updated by aggregating its current
representation and neighbors’ hidden representations. With the support of a mapping function (e.g. a fully-connected
layer), the learned representation can serve for downstream tasks such as node classification.

3.2 | Subgraph-based training for GNN models
The learning scheme shown in Equation 1 needs to take the full graph G as input. Training GNN models with the
full graph, especially facing large-sized graphs, may easily lead to aforementioned three problems: neighbors explosion,
node dependence, and oversmoothing [4]. To solve these problems, subgraph-based training methods [4, 14] employ
subgraphs of G to construct the mini-batch in each training iteration and update the complete GNN models based
on the mini-batch gradient. We use the Gt = (Vt , Et) to denote a subgraph of G, where Vt ⊆ V and Et ⊆ E; In this
way, the neighbor aggregation procedure of GNN models when training with the subgraph Gt can be represented as:

H(0) = XGt
H(l+1)vi

= σ (
∑
j ∈NGtvi

αGt
i j
· H(l)vj W(l)) (2)

Here, NGtvi is the neighbor nodes set of node vi in Gt ; αGt corresponds to the cofficient matrix of Gt . The ag-
gregated representations of nodes in Gt are used to calculate the loss and gradients in order to update the complete
GNN models.

However, different from previous data types such as the image using mini-batch gradient descent, the nodes in
a graph are not independent from each other. In this way, sampling subgraphs is equivalent to dropping some edges,
which may lead to losing dependency information (connections). For this concern, RippleWalk [4] provides a theo-
retical analysis in Theorem 1 and 2, which prove that the subgraph-based mini-batch gradient descent is still reliable
for optimizing GNN models. However, the quality of subgraphs will have a great impact on the training performance,
and this is also the problem we try to solve in the paper: sampling more effective subgraphs for the learning of GNN
models.

4 | PROPOSED METHODOLOGY
In this section, we first introduce two metrics Feature Smoothness and Connection Failure Distance that are the keys to
sampling effective subgraphs. Then we propose the metric-guided sampling method, and follow it up by presenting
the subgraph-based training and representation aggregation-based prediction of the proposed MeGuide framework.

4.1 | Subgraph Sampling Metrics
The neighbors aggregation scheme works to collect and aggregate neighboring information to update node represen-
tations. The neighboring relationship on a graph can indicate the closeness among nodes to a certain extent. We
analyze the neighboring information aggregation process from the perspective of information gain [40]. When neigh-
boring nodesNvi and vi are too similar, they cannot bringmuch information gain to the final aggregated representation
of vi . At the same time, the neighbors aggregation scheme will aggregate the multi-hop neighboring nodes with more
stacked convolution layers. When the hop distance is too long, node representations from different clusters become

Bai & Ren et al. 7
mixed up [7], which is the primary reason of oversmoothing. Therefore, the hop distance should be related to the
effectiveness of information gain during the neighbors aggregation process.

Based on the above two analyses, we define Feature Smoothness and Connection Failure Distance to measure the
quantity and quality of information gain in the aggregation process, respectively. These two metrics can guide the
sampling method to obtain subgraphs that can bring high-quality information gain for the learning of GNN models.

4.1.1 | Feature Smoothness
In order to quantify the information obtained from neighboring nodes, we use Kullback-Leibler divergence to measure
the information gain between two connected nodes.

Definition 1 (Information Gain between Connected Nodes): Given a graph G = (V, E) , for each node v ∈ V and its
representation follows the distribution Q ; the node v ′ ∈ Nv , and the aggregated representation of v from v ′ (denoted as
AGG (v ,v ′)), follows the distributionQAGG . AssumeQ andQAGG are over the same feature space X. The information gain
of the graph G can be measured by the Kullback-Leibler divergence [40] as:

DKL (QAGG | |Q) =
∫
X
QAGG (x) · log QAGG (x)

Q (x) dx (3)

Similarly, for a specific node vi ∈ V and its neighboring node vj ∈ Nvi , we can denote the information gain of vi from vj as
DKL (QAGG (vi ,vj) | |Qvi) .

From Hou et al. [15], the Kullback-Leibler divergence can measure the information gain between one node and
all neighboring nodes. Since for node v , if the features of its neighboring nodes are exactly the same as v ’s feature,
obviously the divergence is 0. On the other hand, when the neighboring nodes possess significantly different feature
distributions compared with the central node, the divergence is relatively large. However, in practice, the accurate
distributions of node features are unknown. Therefore we propose the following Feature Smoothness to quantify the
actual information gain.

Definition 2 (Feature Smoothness): Given a graph G = (V, E) , the feature smoothness of the graph is defined as:

λf =
| |∑v∈V

(∑
v ′∈Nv (xv − xv ′)

)2 | |1
|E | · d (4)

where | | · | |1 is the Manhattan norm, xv ∈ Òd and xv ′ ∈ Òd are the initial features of v and v ′, respectively. Similarly,
we can also define the feature smoothness between connected nodes vi and vj as:

λ
f
(vi ,vj) =

| | (xvi − xvj)2 | |1
d

(5)
The λf in Definition 2 counts the sum of norm-2 distance among connected nodes, which can provide an overall fea-
ture divergence of the entire graph. A higher λf indicates that the feature signals of a graph have higher frequency [15],
meaning that the connected nodes in the graph are more likely dissimilar. While λf is an overall metric of the entire
graph, the λ

f
(vi ,vj) measures the similarity between connected nodes vi and vj . Different from the Kullback-Leibler

8 Bai & Ren et al.
divergence that is unknown in practice, instead λ

f
(vi ,vj) can be easily calculated for specific connected nodes. There-

fore, we propose to explicitly quantify the information gain with the help of λ
f
(vi ,vj) , and state the relation between

information gain and Feature Smoothness in the following theorem.

Theorem 1 Given a G = (V, E) , the information gain of node vi from its neighboring node vj in Definition 1 is positively
related to their feature smoothness λf (vi ,vj) , i.e.,

DKL (QAGG (vi ,vj) | |Qvi) ∼ λf (vi ,vj) (6)

Before proving Theorem 1, here we provide a lemma to assist the proof.

Lemma 1 Assume Q is the distribution of node v ∈ V and S is the distribution of the neighboring nodes∑v ′∈Nv v
′, the

Kullback-Leibler divergence DKL (S | |Q) is positively related toV ar (|Nv | · xv −
∑
v ′∈Nv xv ′) , i.e.,

DKL (S | |Q) ∼V ar (|Nv | · xv −
∑
v ′∈Nv

xv ′) (7)

whereV ar (·) denotes the variance, |Nv | is the number of nodes in Nv .

Proof of Lemma 1 For DKL (S | |Q) , since the explicit formulas of S and Q are unknown, we use the discrete
space approach: the histogram, to estimate S and Q . In detail, we divide the feature space X = [0, 1]d into r d bins
{H1,H2, . . .Hr d } evenly, and the length is 1

r and dimension is d . Following the distributions of S and Q , there are 2 |E |
corresponding samples of nodes (each connected two nodes can be regarded as the central node and the neighboring
node, and vice versa) in total, we use the |Hi |Q and |Hi |S to denote the number of samples falling into bin Hi . In this
way, we have

DKL (S | |Q) '
r d∑
i=1

|Hi |S
2 |E | · log

|Hi |S
2|E |
|Hi |Q
2|E |

=
1

2 |E |

r d∑
i=1

|Hi |S · log |Hi |S|Hi |Q

=
1

2 |E | (
r d∑
i=1

|Hi |S · log |Hi |S −
r d∑
i=1

|Hi |S · log |Hi |Q)

=
1

2 |E | (
r d∑
i=1

|Hi |S · log |Hi |S −
r d∑
i=1

|Hi |S · log(|Hi |S + ∆i))

(8)

where∆i = |Hi |Q − |Hi |S . In this way, we can expand the term∑r d

i=1 |Hi |S · log(|Hi |S +∆i) by applying the second-orderTaylor approximation at the point 0 as
r d∑
i=1

|Hi |S · log(|Hi |S + ∆i) '
r d∑
i=0

|Hi |S (log |Hi |S + ln 2
|Hi |S

· ∆i −
ln 2

2(|Hi |S)2
· ∆2i) (9)

Note that the number of samples from S and Q are the same, which means

Bai & Ren et al. 9

r d∑
i=0

|Hi |S =
r d∑
i=0

|Hi |Q = 2 |E | (10)

So we have ∑r d

i=0 ∆i = 0. Therefore,

DKL (S | |Q) '
1

2 |E | (
r d∑
i=1

|Hi |S · log |Hi |S −
r d∑
i=1

|Hi |S · log(|Hi |S + ∆i))

' 1

2 |E | (
r d∑
i=1

|Hi |S · log |Hi |S −
r d∑
i=0

|Hi |S (log |Hi |S + ln 2
|Hi |S

· ∆i −
ln 2

2(|Hi |S)2
· ∆2i))

=
1

2 |E |

r d∑
i=1

(ln 2
2 |Hi |S

∆2i − ln 2∆i)

=
ln 2
4 |E |

r d∑
i=1

∆2
i

|Hi |S

(11)

For S and Q , we consider the samples of S as {xv : v ∈ V} and samples of Q as { 1
|Nv |

∑
v ′∈Nv xv ′ : v ∈ V} withcounts |Nv | for node v . In this way, the difference between S and Q can be represented by the expectation of

|Nv |xv −
∑
v ′∈Nv xv ′ . Meanwhile, the discrepancy of numbers of samples in each bin, i.e. ∆i , is positively correlated

with the difference between S and Q . If we regard the |Hi |S as constant, we can infer

DKL (S | |Q) '
ln 2
4 |E |

r d∑
i=1

∆2
i

|Hi |S

'Å[(|Nv |xv −
∑
v ′∈Nv

xv ′)2]

=V ar (|Nv |xv −
∑
v ′∈Nv

xv ′)

(12)

Based on the Lemma 1, state the proof of Theorem 1.

Proof of Theorem 1 According to Lemma 1, for node vi , S is the distribution of its neighboring nodes ∑
v ′∈Nvi

xv ′ .
Considering one neighboring node of vi (e.g., vj ∈ Nvi), the DKL (Q | |S) in Lemma 1 will derive into DKL (Qvi | |Qvj) ,and it has

DKL (Qvj | |Qvi) ∼V ar (| {vj } | · xvi −
∑

v ′∈{vj }
xv ′)

=V ar (xvi − xvj)
(13)

10 Bai & Ren et al.
According to the proof of Theorem 4 in [15] and our Definition 2,

λ
f
(vi ,vj) =

| | (xvi − xvj)2 | |1
d

=
| |∑v∈{vi } (

∑
v ′∈{vj } xv − xv ′)

2 | |1
| {vi } | · d

=
| |V ar (xvi − xvj) | |1

d

∼V ar (xvi − xvj)

(14)

Therefore, we can find that
DKL (Qvj | |Qvi) ∼ λf (vi ,vj) (15)

Finally, since the AGG (vi ,vj) in Definition 1 is equivalent to weighted summation of xvi and xvj i.e., xvi + αj xvj , where
αj ∈ (0, 1) is a fixed value, and DKL (Qvi | |Qvi) = 0, thus we can conclude

DKL (QAGG (vi ,vj) | |Qvi) ∼ DKL (Qvj | |Qvi) ∼ λf (vi ,vj) (16)

From Theorem 1, we can conclude that a higher λ
f
(vi ,vj) represents higher information between connected nodes.

In such case, for a specific node vi we are able to measure its information gain from the neighboring node vj by
computing the feature smoothness λ

f
(vi ,vj) . In Section 4.2, λf (vi ,vj) serves as the metric to determine the neighboring

nodes sampling strategy, where the neighboring nodes can provide more information gain will be sampled.

4.1.2 | Connection Failure Distance
As we mentioned before, a long hop distance can lead to unexpected aggregation between nodes from different clus-
ters. When measuring the aggregation of two nodes from different clusters by feature smoothness, the information
gain may be relatively large, but the quality of this information gain is not high. Considering the node classification
task, nodes from two different clusters are likely to have different labels. Aggregating the representations of nodes
with different labels essentially introduces negative information to damage the discrimination of node representation,
which results in oversmoothing finally. Therefore, in addition to measuring the quantity of information gain, we also
need to explore the way to measure its quality.

Many previous works have analyzed through experiments that GNN models with deep stacking layers (long hop
distances) bring very limited improvement in model performance [9, 41], and the model performance even declines
significantly [42]. This actually shows that the longer the hop distance, the more negative information is introduced,
and the quantity of negative information will eventually exceed the positive information. It is reasonable to consider
that neighbors with the same label contribute positive information to the information gain and other neighbors con-
tribute negative disturbance. As the hop distance between two nodes becomes longer, the probability of two nodes
having different labels rises, and the possibility of introducing negative information is also rising. We treat multi-hop
connections between nodes with different labels as failure connections because these connections bring more nega-
tive information gain. We provide a simple illustration of the failure connection in Figure 1. The different colors of the
nodes in the graph represent different classes. The three connections marked in green are failed connections since

Bai & Ren et al. 11

F IGURE 1 An illustration of the failure connection. The different colors of the nodes represent different node
labels. The three connections marked in green are failed connections.

they link nodes with different labels. The longer the hop distance is, the probability that the central node encounters
nodes with different labels increases. In this simple illustration, when the hop distance is greater than 3, the number
of nodes with different labels will be far more than nodes with the same label. A large number of failure connections
will make the negative information gain more than the positive one. Here we define a metric related to hop distance,
namely Connection Failure Distance, to measure the quality of information gain.

Definition 3 (Connnection Failure Distance): To measure the quality of the information gain brought by the neighbors ag-
gregation process, we define the metric Connection Failure Distance as:

λd =

∑
vi ∈V max{hop_d i s (vi ,vj) | vj ∈ V, É(vi ,vj) = 1}

|V | (17)

where É(vi ,vj) is an indicator function: if the label yvi of the node vi is the same as yvj of the node vj , it returns
1, otherwise returns 0. hop_d i s (vi ,vj) is the smallest number of hops between vi and vj . If two nodes can not be
connected through multi-hops, we set the value as 0. λd reflects the average longest hop distance between two
nodes with the same label in G. Neighbors aggregation longer than λd is likely to be performed between two nodes
with different labels, which contributes more negative information. Because of this, we name λd as Connection Failure
Distance to indicate that the multi-hop connections longer than λd are meaningless.

Theorem 2 Given two nodes vi and vj , if hop_d i s (vi ,vj) > λd , p (É(vi ,vj) = 1) < 1#cl asses . Here, p (·) represents the
probability and #cl asses denotes the total number of classes of nodes.

Proof According to the basic assumption in the graph structure data, the closer the nodes are, the more similar and
the more likely they are to have the same label. From such assumption, given a vi we can derive that p (É(vi ,vj) =
1) > 1#cl asses can always be satisfied when hop_d i s (vi ,vj) is small enough. It is obvious since nodes closer to vi have
the higher probability owning same label with vi compared to other nodes, and such higher probability is greater than

1#cl asses . Thus we can always find a d0 that satisfies d0 < λd and p (É(vi ,vj) = 1 |hop_d i s (vi ,vj) <= d0) > 1#cl asses . Insuch case, p (É(vi ,vj) = 1 |hop_d i s (vi ,vj) > d0) < 1#cl asses and then we can get p (É(vi ,vj) = 1 |hop_d i s (vi ,vj) > λd) <
1#cl asses .

12 Bai & Ren et al.

λd

λf

Metrics Calculation Sampled Subgraph

Expansion 1 Expansion 2 Expansion 3

vrvr vr

Metric-guided Sampling

F IGURE 2 An illustration of the metric-guided sampling process of MeGuide sampler. In this example,
bλd /2c = 3 determines the expansion step is 3. The sampling process starts from one root node vr . In each
expansion, the background color region represents the neighbor set. For two connected nodes vi and vj , if
λ
f
(vi ,vj) ≥ ρλf , the edge between them is a bold black line and the node will be sampled. Otherwise, the edge is a

blue dotted line, and the node will be dropped. After 3 expansion steps, the colored nodes represent the truly
sampled nodes and constitute a subgraph. (Best viewed in color)

According to Theorem 2, given a specific node vi , any node that has longer hop distance than λd is more likely to
own different labels. Thus we can leverage λd as the metric to guide the subgraph sampling process, aiming to avoid
the negative information aggregation within the sampled subgraphs.

However, if we use λd to measure the quality of the information gain, node labels are required for calculation.
Since we cannot obtain the labels of all nodes for training, we utilize labeled nodes in the training set to estimate λd
instead.

4.2 | Metric-Guided Subgraph Sampling
As a subgraph learning framework for GNN models, the subgraph sampling method is the key to the framework’s
performance. A suitable and accurate selection of neighboring nodes can retain node content information and graph
topology at the same time, which can help achieve the same object as the full graph in Equation 2. Based on the
proposed two metrics in Section 4.1, we design the metric-guided subgraph sampling method MeGuide Sampler to
obtain effective subgraphs.

We utilize two previous proposed metrics as follows. At first, Connection Failure Distance λd is used to determine
the overall size of subgraphs. MeGuide Sampler adopts a sampling strategy that expands from a random root node
outwards sequentially, thus the number of expansion steps can control the scale of subgraphs to a certain extent. By
setting the number of expansion steps to bλd /2c, we can ensure that the hop distance between two nodes in the
sampled subgraph does not constitute a failure connection, which can avoid much negative information. Here the
value of λd is estimated by the labeled nodes in the training set.

Second, Feature Smoothness λf is used to select neighboring nodes with high-quantity information gain during the
expansion process. As we prove in Section 4.1.1, the λ

f
(vi ,vj) can measure the information between two connected

nodes. Here, we select the neighboring nodes with the condition λ
f
(vi ,vj) ≥ ρλf , which means selecting those nodes

with higher information gain than the overall level of the graph G but discard those with smaller information gain.
Here, ρ is a hyper-parameter to control the feature smoothness-based selection criteria.

In Figure 2, we illustrate the sampling process with the Connection Failure Distance of 6, which enables a more
intuitive understanding of each expansion. More details described by pseudocode are exhibited in Algorithm 1.

Bai & Ren et al. 13

Algorithm 1:MeGuide Sampler
Input: Target graph G = (V, E) ; Connection Failure Distance λd ; Graph Feature Smoothness λf ; Feature

Smoothness Hyper-parameter ρ
Output: Subgraph Gk
Initiate Gk = (Vk , Ek) with Vk = ∅; Set expansion step m = 0; Set current expansion nodes set CS = ∅; Set
next expansion nodes set N S = ∅;
Randomly pick the root node vr , add vr into Vk and CS ; while m ≤ bλd /2c do

for vi ∈ CS do
for vj ∈ {vj |evi ,vj ∈ E,vj ∈V \ Vk } doif λ

f
(vi ,vj) ≥ ρλf then
Vk = Vk ∪ {vj };
Ek = Ek ∪ {evi ,vj };
N S = N S ∪ {vj };

end
end
CS = N S ;
N S = ∅;
m = m + 1;

end
return Gk ;

4.3 | Subgraph-based Training in MeGuide
MeGuide can support training most widely used GNNmodels (e.g., GAT, GCN) to avoid the three problems mentioned
above. Different from training GNN models with the full graph G, MeGuide employs the subgraphs sampled from G
byMeGuide Sampler in each training iteration. In this way, a smaller size of coefficient matrices and only part of nodes
are loaded into the GNN model during each training iteration. For a specific iteration, a subgraph Gt is selected from
the set of sampled subgraphs Â, whose own the ground truth of nodes in yGt . The GNNmodel HW (·) to be trained is
built on Gt and calculates the loss via forwarding propagation. Then, the weights W of the GNN model are updated
via SGD. After enough iterations, we can achieve the GNN model with trained weights. We describe the training
process of MeGuide in detail by the pseudocode in Algorithm 2.

4.4 | Representation Aggregation-based Prediction
Afterwe achieve theGNNmodel with trainedweights, thesemodels can alreadymake predictions for unlabeled nodes
(testing samples). When facing the inductive learning in multiple graphs, we can feedforward the multiple unseen
graphs in the test set to the GNN model directly. However, for the transductive learning in one single large graph,
it is still difficult to feed the full graph into the model and implement the forward propagation to make predictions.
Especially the memory space may not be able to load the full graph. In this case, MeGuide continues to use the
sampled subgraph to make predictions in a semi-supervised way.

There are two problems in using subgraphs to predict: 1, in the training subgraph set Â, may not all unlabeled
nodes are included. 2, unlabeled nodes can be sampled into multiple subgraphs, so it is possible to output multiple
conflicting prediction results. For problem 1, MeGuide will sample extra subgraphs using the missing unlabeled nodes

14 Bai & Ren et al.

Algorithm 2:MeGuide Training for GNNs
Input: Graph G; GNNs model HW (·) ; loss function Loss (·) ; subgraph mini-batch size M
Output: Trained HW (·)
Initialize training subgraph set Â = ∅;
for k = 1, 2, . . . ,M do
Gk ← MeGuide Sampler; /* By Algorithm 1 */
Â = Â ∪ {Gk };end

for each iteration doSelect a subgraph Gt from batch;
GNN model HW (·) construction on Gt ;
Forward propagation to calculate the loss value: l oss = Loss (HW (Gt), yGt) ; /* yGt denotes the groundtruth of nodes in Gt . */
Backpropagation to update weightsW;

end
return HW (·)

of Â as root nodes. These extra subgraphs along with Â will constitute the testing subgraph set Ô. To deal with
problem 2, MeGuide implements aggregation on multiple representations of the same node and trains the predictor
(e.g. classification layer) with the aggregated representations of labeled nodes. For example, a labeled node vi are
sampled in Gt1 , Gt2 , Gt3 , and we extract the representations hGt1vi

, hGt2vi
, hGt3vi

learned by the GNN model from each
subgraph. In this paper, we use the mean aggregator to combine all representations as:

hvi ←MEAN({hGt1vi
, hGt2vi

, hGt3vi
}) (18)

The aggregated representation hvi will be used to train a new predictor. The aggregation process is the same for
unlabeled nodes. The aggregated representations of unlabeled nodes will be used to make predictions by the new
predictor. The representations of the same node in different subgraphs essentially embed the content of partial neigh-
boring nodes and topology information of different local parts of the full graph. Therefore, the way to aggregate the
representations of the same node in different subgraphs can enable the final representation with more comprehensive
information.

5 | EXPERIMENTS
To show the effectiveness and efficiency of MeGuide, extensive experiments have been conducted on benchmark
datasets. This section first describes the datasets used in experiments and then introduces the experimental settings
in detail. Generally, we aim to answer the following evaluation questions based on experimental results together with
the detailed analysis:

• Question 1: Can the subgraph-based training of MeGuide effectively train GNN models and overcome the afore-
mentioned three problems?

• Question 2: Can the MeGuide Sampler provide powerful subgraphs to support effective and efficient training?

Bai & Ren et al. 15
TABLE 1 Statistics of the Datasets in Experiments

Transductive Inductive
Cora Citeseer Pubmed Flickr Reddit

Nodes 2708 3327 19717 89250 232965
Edges 5429 4732 44338 899756 11606919
Features 1433 3703 500 500 602
classes 7 6 3 7 41
Train Rate 0.052 0.036 0.003 0.5 0.66

• Question 3: Can the representation aggregation-based prediction of MeGuide improve the performance of origi-
nal GNN models?

5.1 | Experiment Settings
5.1.1 | Datasets
Five benchmark datasets are used to evaluate the proposed framework MeGuide: Cora, Citeseer, PubMed [43], Flickr,
and Reddit [14]. The descriptions of every dataset locate in Table 1. Cora, Citeseer, and Pubmed [43] are standard
citation network benchmark datasets. Flickr [14, 44] is built by forming links between images sharing common meta-
data from Flickr. Edges are formed between images from the same location, submitted to the same gallery, group, or
set, images sharing common tags, images taken by friends, etc. Zeng et al. [14] scan over the 81 tags of each image
and manually merged them to 7 classes. Each image belongs to one of the 7 classes, which is used as the label for
images. Reddit [10] is a graph dataset constructed from Reddit posts. The node label is the community, or "subreddit"
that a post belongs to. These datasets involve both the transductive learning task and inductive learning task. The
transductive task in our experiments is semi-supervised node classification on one single graph; the inductive task is
the node classification on multiple graphs. The statistic information of them is presented in Table 1. The train data
rate in the table means the ratio of training data over the full dataset.

5.1.2 | GNNModels for Learning
In our experiments, we adopt two powerful and widely used GNNmodels, GCN [19] and GAT [17] as the basic models.
The settings of these twomodels are different for various datasets. Specifically, both GCN andGAT contain two layers,
and the size of the hidden layer is 32 for Cora, Citeseer, and Pubmed datasets; for Flickr and Reddit datasets, the GCN
hidden layer size is 128, and the GAT hidden layer size is 32. For the training of GNNs, we select a part of node data
as the validation set: for Cora, Citeseer, and Pubmed datasets, each of the validation sets includes 500 nodes, and
the test set contains 1000 nodes; for Flickr and Reddit datasets, two percent of all nodes are included as validation
sets, and another ten thousand nodes are selected into the test sets. We set the dropout rate as 0.5 and adopt the
Adam [45] as the optimizer for back-propagation. The learning rate is 0.01, and the weight decay rate is 5 × 10−4.

16 Bai & Ren et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Feature Smoothness Hyper-parameter

0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89

Te
st

 A
cc

ur
ac

y

Cora
Citeseer

F IGURE 3 MeGuideGCN Results with Different Feature Smoothness Hyper-parameter ρ.

5.1.3 | Comparison Methods
We compare the proposed MeGuide with several state-of-the-art baseline methods, including vanilla GCN, GAT,
GraphSAGE, Cluster-GCN, GraphSAINT, and RippleWalk (RWT). These comparison methods can be divided into two
categories: (1) full graph-based methods, which use the full graph in each training iteration; (2) subgraph-based meth-
ods involve only a subgraph in each train iteration. GCN and GAT belong to the first category for our selected baseline
methods, while Cluster-GCN, GraphSAINT, and RWT are in the second category. A detailed description of the com-
parison methods is listed as follow:
Full Graph-based Methods
• GCN [19]: GCN is a semi-supervised method proposed for the node classification task. The input of GCN is the

full graph.
• GAT [17]: GAT is an attention-based graph neural network for the node classification. GAT operates on the full

graph.
• GraphSAGE [10]: GraphSAGE is a general inductive framework that leverages node feature information to effi-

ciently generate node embeddings for previously unseen data. GraphSAGE does not require that all nodes in the
graph are present during training.

Subgraph-based Methods
• MeGuide: MeGuide is the general learning framework for GNN models proposed in this paper.
• Cluster-GCN [6]: Cluster-GCN conducts subgraph sampling based on the graph clustering, and leverages the

sampled subgraphs from different clusters to train the GNNs.
• GraphSAINT [14]: GraphSAINT is designed for inductive learning on graph datasets. It samples subgraphs with

different types of random samplers and uses these subgraphs to constitute the mini-batch to train GNN struc-
tures.

• RippleWalk [4]: RippleWalk (RWT) is a general training framework for GNN models on both transductive and
inductive learning tasks. It samples subgraphs with the expansion steps from initial nodes, and return subgraphs
with pre-defined target sizes. RWT constructs the mini-batch with sampled subgraphs to train GNN models.
Generally, the key of subgraph based methods is how to design the subgraph samplers. Apart from the subgraph-

based methods mentioned above, we also compare MeGuide with the following subgraph sampling methods:

Bai & Ren et al. 17
TABLE 2 Test Accuracy Results on All Datasets
Methods Transductive Inductive

Cora Citeseer Pubmed Flickr Reddit
GraphSAGE 0.8096 ±0.0103 0.6772±0.0110 0.7589±0.0161 0.4337±0.0201 0.9353±0.0211
Cluster-GCN 0.6820±0.0638 0.6280±0.0430 0.7947±0.0036 0.4097±0.0405 0.9523±0.0338
GraphSAINT 0.8045±0.0114 0.6961±0.0299 0.7424±0.0202 0.4848±0.0252 0.9451±0.0062
GCN 0.8150±0.0050 0.7030±0.0050 0.7890±0.0070 0.4400±0.0388 0.9333±0.0147
GCN + Random 0.7945±0.0105 0.687±0.0133 0.7345±0.0163 0.4713±0.0083 0.8243±0.0336
GCN + BFS 0.8144±0.0045 0.7079±0.0106 0.7971±0.0021 0.4754±0.0046 0.8123±0.0434
GCN + RWT 0.8250±0.0016 0.7127±0.0018 0.8259±0.0225 0.4797±0.0038 0.9385±0.0309
MeGuideGCN 0.8327±0.0130 0.7170±0.0252 0.8317±0.0167 0.5189±0.0121 0.9499±0.0232
GAT 0.8300±0.0070 0.7130±0.0082 0.7903±0.0033 - -
GAT + Random 0.7921±0.0236 0.6607±0.0376 0.6765±0.0415 0.4534±0.0040 0.6452±0.0447
GAT + BFS 0.7756±0.0281 0.6500±0.0493 0.7080±0.0511 0.4642±0.0232 0.7297±0.0403
GAT + RWT 0.7994±0.0309 0.7212±0.0142 0.8210±0.0019 0.4724±0.0089 0.8699±0.0179
MeGuideGAT 0.8017±0.0110 0.7250±0.0121 0.8174±0.0275 0.4808±0.0301 0.8776±0.0320

“-” insufficient memory.

• Random: Random sampler generates subgraph by randomly select nodes from the full graph to a pre-defined
target subgraph size.

• BFS: BFS sampler conducts the subgraph sampling from one initial node to expand with BFS strategy, and stop
when the expanded subgraph reaches the target size.

We replace MeGuide Sampler with these two samplers in order to make comparisons. MeGuideGAT denotes
applyingMeGuide on themodel GAT. GAT +BFS represents thatwe testMeGuide onGATwith the setting of replacing
MeGuide Sampler with BFS.

5.2 | Experiment Environment
We run the experiments on the Server with 3 GTX-1080 ti GPUs. Codes are implemented in Pytorch 1.4.0, torch-
geometric 1.6.0, cudatoolkit 10.1.243, and scikit-learn 0.23.1. Code is available at the github link: https://github.com/
YuxiangRen/Measuring-and-Sampling-A-Metric-guided-Subgraph-Learning-Framework-for-Graph-Neural-Network.

5.3 | Experimental Results with Analysis
5.3.1 | Overall performance analysis
The results of both the transductive learning task and the inductive learning task are exhibited in Table 2. We present
the accuracy of node classification on the test set. For the baseline methods evaluating the performance with F1

18 Bai & Ren et al.

Cora Citeseer Pubmed
Dataset

50

60

70

80

90

100

Ac
cu

ra
cy 81.5

70.3

78.981.1

70.8

80.5
83.3

71.7

83.2

GCN
MeGuideGCN_No

MeGuideGCN

(a) Comparison on GCN Learning
Cora Citeseer Pubmed

Dataset
50

60

70

80

90

100

Ac
cu

ra
cy 83.0

71.3

79.079.4

71.1

80.980.2

72.5

81.7

GAT
MeGuideGAT_No

MeGuideGAT

(b) Comparison on GAT Learning

F IGURE 4 Ablation Study of Representation Aggregation-based Prediction.

score in their original papers, out of the need for a consistent evaluation metric, we reimplement their models and
run the experiments to report the results based on the metric accuracy. From Table 2, we can observe that MeGuide
achieves the best results on 4 out of the 5 datasets, for cases when GCN and GAT as the original GNN models.
Regarding the dataset (Reddit) that MeGuide does not obtain the highest accuracy, MeGuide’s performance is still
competitive compared to the state-of-the-art methods. Therefore, to theQuestion 1 we can confidently answer that
MeGuide can guarantee the performance of the original GNN models while even help improves the performance of
the GNNs. Apart from this, comparing to other subgraph-based methods, including Cluster-GCN, GraphSAINT, and
RWT,MeGuide acquires the best results on almost all datasets. This comparison also verifies the effectiveness in GNN
model learning, which also illustrates the ability of MeGuide to overcome the three problems encountered by GNN
models from the perspective of the final result. In the following part, we will continue to discuss the performance of
MeGuide in dealing with the three problems separately.

To answer to the Question 2, we can compare the performance among different samplers. The improvement
from MeGuide sampler can reach up to 10 percent compared to Random and BFS sampler (e.g., on Pubmed dataset)
and 4 percent against RWT (e.g., on Flickr dataset). Such a phenomenon illustrates that the subgraphs involved by
MeGuide Sampler are powerful and be able to support effective training for GNN models.

To answer to theQuestion 3, we conducted a set of ablation studies. We remove the representation aggregation-
based prediction in MeGuide and directly input the full graph to the trained GNN models for prediction. The experi-
mental results are shown in Figure 4, whereMeGui deGCN _No represents that applyingMeGuidewithout the represen-
tation aggregation-based prediction to GCN. It can be seen from the comparison between GCN andMeGui deGCN _No
that the prediction strategy based on the subgraph we designed can improve the performance of trained GNN mod-
els. The result is consistent for the comparison between GAT and MeGui deGAT _No . Besides, the comparison be-
tween GCN andMeGui deGCN _No and the comparison between GAT andMeGui deGAT _No in the Figure 4 can further
demonstrate that MeGuide can better train the original GNN models, and this performance improvement does not
come from the representation aggregation-based prediction phase.

5.3.2 | Space-consuming Analysis
In each experiment, we record the memory usage of our device and show the values in Figure 5. From the figures,
we can see that when using GCN as the original model, on the Cora and Citeseer dataset, the memory usage of
MeGuide is smaller than GCN and RWT by a little gap. GCN requires much more memory space than subgraph-
based methods when it comes to relatively larger datasets (e.g., Pubmed, Flicker, and Reddit). Such a phenomenon is

Bai & Ren et al. 19

GCN GCN+RWT MeGuideGCN
0

100

200

300

400

500

600

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B)

535MB 509MB 495MB

(a) GCN on Cora GCN GCN+RWT MeGuideGCN
0

100

200

300

400

500

600

700

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B)

605MB 587MB 566MB

(b) GCN on Citeseer GCN GCN+RWT MeGuideGCN
0

300
600
900

1200
1500
1800
2100

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 2057MB

1235MB 1132MB

(c) GCN on Pubmed GCN GCN+RWT MeGuideGCN
0

4000
8000

12000
16000
20000
24000
28000
32000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 30392MB

2122MB 914MB

(d) GCN on Flickr

GCN GCN+RWT MeGuideGCN
0

30000

60000

90000

120000

150000

180000

210000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 212003MB

2101MB 1036MB

(e) GCN on Reddit GAT GAT+RWT MeGuideGAT
0

1000

2000

3000

4000

5000

6000

7000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 6921MB

2121MB 1968MB

(f) GAT on Cora GAT GAT+RWT MeGuideGAT
0

2000

4000

6000

8000

10000

12000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 10277MB

2469MB 2421MB

(g) GAT on Citeseer GAT GAT+RWT MeGuideGAT
0

2000

4000

6000

8000

10000

12000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) 11868MB

2629MB 2510MB

(h) GAT on Pubmed

GAT GAT+RWT MeGuideGAT
0

40000

80000

120000

160000

200000

240000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) >240000MB

12000MB 9960MB

(i) GAT on Flickr GAT GAT+RWT MeGuideGAT
0

40000

80000

120000

160000

200000

240000

M
em

or
y

Sp
ac

e
Us

ag
e

(M
B) >240000MB

12080MB 11655MB

(j) GAT on Reddit

F IGURE 5 Memory Space Usage (The unit is MB) on Different Datasets.

reasonable according to the mechanism of GNNs layer computation. Each layer of GNNs computing loads the current
graph’s adjacency matrix, the size of which will increase quadratically along with the increasing of graph size (i.e., the
number of nodes). A similar phenomenon also occurs when GAT becomes the original model. Generally, compared to
full graph-based methods, the advantage of MeGuide is prominent concerning the memory cost. When comparing to
RWT,MeGuide keeps at the same level with RWT and has a slight advantage. Therefore, for theQuestion 1, MeGuide
successfully break through the memory bottleneck brought by node dependence and neighbors explosion (mentioned
in Section 1).

5.3.3 | Time-consuming Analysis

In the training process, we record the convergence time of each experiment and list the results in Table 3. From the
results, it is obvious that subgraph-based methods such as RWT and MeGuide require much less convergence time
than the full graph-based methods GCN and GAT. Such fast training convergence speed of subgraph-based methods
is easy to understand. Since for the feedforward and backpropagation processes of GNNs computing, subgraph-
based methods (e.g., MeGuide) only involve subgraphs instead of the full graph, which limits the occurrence of node
dependence and neighbors explosion to the scope of the subgraph. Therefore, the computation complexity in each
training iteration for subgraph-based methods is much lower than full graph-based methods. Besides, compared to
RWT, the convergence of MeGuide is also slightly faster, but MeGuide can achieve better performance, which reflects
the effectiveness and efficiency of the subgraph sampling by MeGuide.

20 Bai & Ren et al.
TABLE 3 Convergence Time (The unit is second)

Cora Citeseer Pubmed Flickr Reddit
GCN 4.573 1.968 61.90 1161.92 25370
GCN + RWT 1.964 1.826 8.698 1.179 7.722
MeGuideGCN 1.784 1.653 5.112 1.149 7.262
GAT 413.3 500.1 - - -
GAT + RWT 71.44 47.06 139.4 68.06 2614
MeGuideGAT 63.75 36.88 109.7 58.30 2367

“-” insufficient memory for GPU.

TABLE 4 Metrics Value on All Datasets
Cora Citeseer Pubmed Flickr Reddit

λf 0.123 0.051 0.058 1002.042 775.54
λd 8.8 6.5 6.9 5.8 3.9

5.4 | Parameter Analysis
There are some key parameters and metric values employed by our proposed MeGuide. We list the feature smooth-
ness values λf and connection failure distance λd of all datasets in Table 4. On Cora, Citeseer, and Pubmed datasets,
the feature smoothness value is relatively small, illustrating that the nodes in the whole graph share more similar fea-
tures. The subgraph sampling strategy of MeGuide is based on the values in the table. There is another important
hyper-parameter, the feature smoothness hyper-parameter ρ, which determines the expansion condition of MeGuide
sampler. We tune different values of ρ and exhibit the results in Figure 3. The trend of results indicates that MeGuide
achieves the highest performance when ρ locates in the range of 0.2 to 0.5. When ρ is too small (e.g., ρ = 0.1) or
becomes larger, the performance worsens. Such a phenomenon matches our expectation, because on the one hand,
when ρ is too small, MeGuide is not able to filter nodes with less information gain during the sampling process of
MeGuide sampler. On the other hand, when ρ is too large, the expansion step of MeGuide sampler cannot work
anymore: only a few neighboring nodes of the already selected nodes are qualified for being sampled.

6 | CONCLUSION
In this paper, we propose a general framework MeGuide for optimizing the training and prediction of GNN models.
In MeGuide, we design the subgraph-based training to deal with three non-trivial problems (neighbors explosion, node
dependence, and oversmoothing) bothering many GNN models. Different from the existing subgraph-based training
methods, we define two metrics that can be used to measure the performance gain of GNN models to guide the
sampling of subgraphs. The training performance of the GNN models can be improved through more effective sub-
graphs. In addition, for the case of the memory bottleneck when using trained GNN models to predict on a single
large graph, MeGuide provides a solution for prediction based on subgraphs, which is an unsolved problem left by
existing subgraph-based training methods. Extensive experiments on 5 benchmark graph datasets and 2 widely used
GNN models demonstrate the effectiveness of MeGuide, where GNN models not only achieve the comparative or

Bai & Ren et al. 21
even better performance but less training time and device memory space are required.

references
[1] Zhang J. Social network fusion and mining: a survey. arXiv preprint arXiv:180409874 2018;.
[2] Ren Y, Zhang J. HGAT: Hierarchical Graph Attention Network for Fake News Detection. arXiv 2020;p. arXiv–2002.
[3] Wang Q, Mao Z, Wang B, Guo L. Knowledge graph embedding: A survey of approaches and applications. IEEE Transac-

tions on Knowledge and Data Engineering 2017;29(12):2724–2743.
[4] Bai J, Ren Y, Zhang J. Ripple Walk Training: A Subgraph-based training framework for Large and Deep Graph Neural

Network. In: IJCNN; 2021. .
[5] Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? In: ICLR; 2019. .
[6] Chiang WL, Liu X, Si S, Li Y, Bengio S, Hsieh CJ. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In: KDD; 2019. .
[7] Zhao L, Akoglu L. PairNorm: Tackling Oversmoothing in GNNs. arXiv:190912223 2019;.
[8] Li Q, Han Z, Wu XM. Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI; 2018. .
[9] Rong Y, Huang W, Xu T, Huang J. DropEdge: Towards the Very Deep Graph Convolutional Networks for Node Classifi-

cation. In: arXiv:1907.10903; 2019. .
[10] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: NIPS; 2017. .
[11] Chen J, Ma T, Xiao C. Fastgcn: fast learning with graph convolutional networks via importance sampling.

arXiv:180110247 2018;.
[12] Chen J, Zhu J, Song L. Stochastic training of graph convolutional networks with variance reduction. In: ICML; 2018. .
[13] Zou D, Hu Z, Wang Y, Jiang S, Sun Y, Gu Q. Layer-Dependent Importance Sampling for Training Deep and Large Graph

Convolutional Networks. In: NeurIPS; 2019. .
[14] Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V. Graphsaint: Graph sampling based inductive learning method.

arXiv preprint arXiv:190704931 2019;.
[15] Hou Y, Zhang J, Cheng J, Ma K, Ma RT, Chen H, et al. Measuring and improving the use of graph information in graph

neural networks. In: International Conference on Learning Representations; 2019. .
[16] Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. arXiv:13126203

2013;.
[17] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph Attention Networks. In: ICLR; 2018. .
[18] Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM. Geometric deep learning on graphs and manifolds

using mixture model cnns. In: CVPR; 2017. .
[19] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: ICLR; 2017. .
[20] Xinyi Z, Chen L. Capsule graph neural network. In: International conference on learning representations; 2018. .
[21] Sun FY, Hoffmann J, Verma V, Tang J. Infograph: Unsupervised and semi-supervised graph-level representation learning

via mutual information maximization. arXiv preprint arXiv:190801000 2019;.

22 Bai & Ren et al.
[22] Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J. Hierarchical graph representation learning with differentiable

pooling. In: Advances in neural information processing systems; 2018. p. 4800–4810.
[23] Ren Y, Bai J, Zhang J. Label Contrastive Coding based Graph Neural Network for Graph Classification. In: Database

Systems for Advanced Applications Springer International Publishing; 2021. p. 123–140.
[24] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: A review of methods and applications. AI

Open 2020;1:57–81.
[25] Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY. A comprehensive survey on graph neural networks. IEEE transactions

on neural networks and learning systems 2020;32(1):4–24.
[26] DefferrardM, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering.

In: NIPS; 2016. .
[27] Levie R, Monti F, Bresson X, Bronstein MM. Cayleynets: Graph convolutional neural networks with complex rational

spectral filters. IEEE Transactions on Signal Processing 2018;.
[28] Liao R, Zhao Z, Urtasun R, Zemel RS. Lanczosnet: Multi-scale deep graph convolutional networks. arXiv:190101484

2019;.
[29] Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data. arXiv:150605163 2015;.
[30] Li R, Wang S, Zhu F, Huang J. Adaptive graph convolutional neural networks. In: AAAI; 2018. .
[31] Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. Graph convolutional neural networks for web-scale

recommender systems. In: KDD; 2018. .
[32] Gao H, Wang Z, Ji S. Large-scale learnable graph convolutional networks. In: KDD; 2018. .
[33] Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi Ki, Jegelka S. Representation Learning on Graphs with Jumping Knowledge

Networks. In: ICML; 2018. .
[34] Lee JB, Rossi RA, Kong X, Kim S, Koh E, Rao A. Graph Convolutional Networks with Motif-based Attention. In: CIKM;

2019. .
[35] Klicpera J, Bojchevski A, Günnemann S. Predict then Propagate: Graph Neural Networks meet Personalized PageRank

2019;.
[36] Haonan L, Huang SH, Ye T, Xiuyan G. Graph star net for generalized multi-task learning. arXiv:190612330 2019;.
[37] Abu-El-Haija S, Perozzi B, Kapoor A. Mixhop: Higher-order graph convolution architectures via sparsified neighborhood

mixing. arXiv:190500067 2019;.
[38] Chen M, Wei Z, Ding B, Li Y, Yuan Y, Du X, et al. Scalable graph neural networks via bidirectional propagation. arXiv

preprint arXiv:201015421 2020;.
[39] Zhang J, Meng L. GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation. In:

arXiv:1909.05729; 2019. .
[40] Kullback S, Leibler RA. On information and sufficiency. The annals of mathematical statistics 1951;22(1):79–86.
[41] Zhang J,Meng L. GResNet: Graph Residual Network for Reviving DeepGNNs from Suspended Animation. arXiv preprint

arXiv:190905729 2019;.
[42] Huang W, Rong Y, Xu T, Sun F, Huang J. Tackling Over-Smoothing for General Graph Convolutional Networks. arXiv

preprint arXiv:200809864 2020;.

Bai & Ren et al. 23
[43] Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T. Collective classification in network data. AI magazine

2008;.
[44] McAuley J, Leskovec J. Image labeling on a network: using social-networkmetadata for image classification. In: European

conference on computer vision Springer; 2012. p. 828–841.
[45] Kingma DP, Ba JL. ADAM: A method for stochastic optimization. In: ICLR; 2015. .

Jiyang Bai received the bachelor degree in information and numerical science from Nankai Uni-
versity, China, in 2018. He is pursuing a PhD degree in the Department of Computer Science
at the Florida State University. His main research areas are data mining and machine learning,
especially focus on the graph mining, graph neural networks, graph similarity search.

Yuxiang Ren received the bachelor degree in software engineering and the bachelor degree in
law from Nanjing University, China, in 2015, and the Ph.D. degree in Computer Science from
Florida State University in 2021. His main research areas are data mining and machine learn-
ing, especially focus on the development and analysis of algorithms for social and information
networks, as well as heterogeneous graph mining and fake news detection.

Jiawei Zhang received the bachelor’s degree in computer science fromNanjingUniversity, China,
in 2012, and the Ph.D. degree in computer science from the University of Illinois at Chicago,
USA, in 2017. He has been an Assistant Professor with the Department of Computer Science,
Florida State University, Tallahassee, FL, USA, since 2017. He founded IFM Lab in 2017, and
has been working as the director since then. IFM Lab is a research oriented academic labora-

tory, providing the latest information on fusion learning and data mining research works and application tools to
both academia and industry.

