
Ripple Walk Training: A Subgraph-based Training
Framework for Large and Deep Graph Neural

Network
Jiyang Bai§, Yuxiang Ren§ and Jiawei Zhang

Department of Computer Science, Florida State University, FL, USA
Email: bai@cs.fsu.edu, yuxiang@ifmlab.org, jiawei@ifmlab.org

Abstract—Graph neural networks (GNNs) have achieved out-
standing performance in learning graph-structured data and
various tasks. However, many current GNNs suffer from three
common problems when facing large-size graphs or using a
deeper structure: neighbors explosion, node dependence, and
oversmoothing. Such problems attribute to the data structures
of the graph itself or the designing of the multi-layers GNNs
framework, and can lead to low training efficiency and high
space complexity. To deal with these problems, in this pa-
per, we propose a general subgraph-based training framework,
namely Ripple Walk Training (RWT), for deep and large
graph neural networks. RWT samples subgraphs from the full
graph to constitute a mini-batch, and the full GNN is updated
based on the mini-batch gradient. We analyze the high-quality
subgraphs required in a mini-batch in a theoretical way. A
novel sampling method Ripple Walk Sampler works for sampling
these high-quality subgraphs to constitute the mini-batch, which
considers both the randomness and connectivity of the graph-
structured data. Extensive experiments on different sizes of
graphs demonstrate the effectiveness and efficiency of RWT in
training various GNNs (GCN & GAT). Our code is released in
the https://github.com/anonymous2review/RippleWalk.

I. INTRODUCTION

Graph neural networks (GNNs) have achieved outstanding
performance in graph-structured data based applications, such
as knowledge graphs [28], social medias [22], and protein
interface prediction [6]. GNNs learn nodes’ high-level rep-
resentations through a recursive neighborhood aggregation
scheme [29]. As the graph’s scale increases and higher-
order neighbors are considered, the recursive neighborhood
aggregation can cause the number of neighbors to explode. We
name this problem as neighbors explosion. For each node, the
neighbors explosion will lead to the computation complexity
exponentially increasing with the GNNs depth [5] and the
graph size. Therefore, some current works on GNNs (e.g.,
graph attention networks (GAT) [27]) can only handle small-
size graphs (normally less than 5000 nodes) with a shallow
structure (less than 3 layers). Simultaneously, the graph-
structured data has the characteristics of node dependence,
which means neighboring nodes affect each other in the
learning process. As a result, the most current GNNs have
to learn on the full graph, and when the size of the graph
is too large, it is easy to reach the upper limit of the device
memory. Even with a shallow GNNs structure, the memory

§Equal contribution

space demand is extremely large. node dependence also limits
the performance of training methods such as mini-batch SGD.
Because calculating the loss of one node, GNNs require
embeddings of all node neighbors, and its neighbors also need
embeddings of their neighbors for aggregation. This increases
the overhead of mini-batch SGD, especially for dense graphs
and deeper GNNs. Another factor that limits the effectiveness
of GNNs is oversmoothing. Especially when GNNs go deeper
and learn on the full graph, and it is unavoidable that node
representations from different clusters mix up [33]. But this ag-
gregation is unexpected because nodes from different clusters
do not meet the smoothness assumptions on the graph (close
nodes are similar). Finally, the oversmoothing will lead to node
representations indistinguishable. Therefore, when the GNN
has a deep structure, not only the training is more difficult,
but oversmoothing also impedes its performance.

To deal with the three problems mentioned above, some
methods have emerged. GraphSAGE [8] learns a function that
generates embeddings by sampling and aggregating features
from a node’s local neighborhood. FastGCN [4] utilizes Monte
Carlo approaches to sample neighbors which avoids the neigh-
bors explosion. Chen et.al. [3] develop control variate based
algorithms that allow sampling an arbitrarily small neighbor
size. They all use neighbor sampling to avoid neighbors
explosion and improve the training speed, but they can not
handle the remaining problems. When the full graph’s size
is large, the memory overhead for learning on the full graph
is unacceptable. These methods do not optimize the memory
overhead when speed up training. Cluster-GCN [5] has a
training algorithm based on subgraphs, which are constructed
by clustering on the full graph. The subgraphs are selected
randomly to constitute mini-batches to train the GCN. How-
ever, the size of clusters in a graph is difficult to control. When
very large subgraphs are constructed based on the clustering
results, Cluster-GCN lacks scalability and cannot tackle the
neighbors explosion. Besides, the time and space overhead of
clustering on a large graph are also nonnegligible.

In this paper, we propose a general subgraph-based training
framework, namely Ripple Walk Training (RWT), for deep
and large graph neural networks. RWT aims to handle all
aforementioned problems simultaneously. RWT is developed
from the mini-batch training, but there exist apparent dif-
ferences. Instead of sampling neighbors and training on the

full graph, RWT samples subgraphs from the full graph to
constitute a mini-batch. The full GNN is updated based on
the mini-batch gradient. We design a novel sampling method
Ripple Walk Sampler for RWT, which considers both the
randomness and connectivity of the graph-structured data to
deal with those three problems. RWT can sample high-quality
subgraphs to constitute the mini-batch to benefit efficient
training. For the problem of neighbors explosion, the mini-
batch gradient is calculated within subgraphs so that subgraphs
of acceptable size can completely avoid this problem. At the
same time, the gradient does not depend on nodes outside
the subgraph, which solves the node dependence at the sub-
graph level. Unexpected aggregations usually occur between
subgraphs. Yet, the propagation-aggregation happens within
the subgraph, so the oversmoothing can be handled.

The contributions of our work are summarized as follows:
• We propose a general subgraph-based training framework

Ripple Walk Training (RWT) for GNNs. RWT not only
accelerates the training speed on the large graph but also
breaks through the memory bottleneck. In addition, it can
effectively deal with the problem of the oversmoothing
that occurs in deep GNNs.

• We analyze what kind of subgraphs can support effective
and efficient training. Based on the analysis, we design
a novel sampling method Ripple Walk Sampler with the
theoretical guarantee.

• We conduct extensive experiments on different sizes of
graphs to demonstrate the effectiveness of RWT. The
results show the superiority of Ripple Walk in training
different GNNs (GCN & GAT) subject to the perfor-
mance and training efficiency.

II. RELATED WORKS

Graph neural networks (GNNs) aim at the machine learning
tasks involving graph-structured data. The first research work
extending the convolutional neural network to the graph-
structured data is [26]. After that, more related works [24],
[19] were introduced. More recently, [2] is proposed and based
on spectral graph theory. Later, spatial-based ConvGNNs [27],
[20] define graph convolutions directly based on a node’s
spatial relations. The spectral-based and spatial-based GNNs
can be regarded as an information propagation-aggregation
mechanism, and such mechanism is achieved by the con-
nections and multi-layer structure. Although GNNs have out-
standing performance, they are also limited by the problems
from three aspects: node dependence, neighbors explosion, and
oversmoothing. Aiming at these problems, some related works
have been proposed in different directions.

Node dependence [5] forces GNNs to be trained on the
entire graph, which leads to the slow training process. More
specifically, in each training epoch, the information aggre-
gation involves the full graph’s adjacency matrix. Thus the
space complexity will be at least O(|V|2), where |V| is the
size of a full graph. To deal with such a problem, [5], [31]
apply the concept of subgraph training methods. The essence
of subgraph training is to collect a batch of subgraphs from

the full graph and use them during the training process. There
are also other approaches to optimize the GNNs frameworks.
[12], [13], [16] optimize the localized filter to reduce the
time cost of training on the full graph. Further, [9], [15]
reduce the number of learnable parameters by dimensionality
reduction and residual graph Laplacian, respectively. But these
approaches do not alleviate the space complexity problem.

Neighbors expansion makes deep GNNs difficult to be-
ing implemented. Because learning a single node requires
embeddings from its neighbors, and the quantity may be
explosive when a GNN goes deeper. Some research works
deal with neighbors explosion by neighbors sampling [8], [4],
[3]. In other directions, several models [7], [30] select specific
neighbors based on defined metrics to avoid the explosive
quantity. [23] randomly remove edges from input graphs to
handle the neighbor explosion. The works mentioned above all
focus on the neighbor-level sampling but still have the same
space complexity with original GNNs.

The problem of oversmoothing in the GCN was introduced
in [14]. When GNNs go deep, the performance suffers from
oversmoothing, where node representations from different
clusters become mixed up [33]. The node information, or
representation propagation-aggregation mechanism, can be re-
garded as one type of random walk within the graph. With
the increasing of walking steps, the representations of nodes
will finally converge to a stable status. Such convergence
would impede the performance of GNNs and make the nodes
indistinguishable in the downstream tasks. Some related works
have been proposed to deal with the oversmmothing. [32]
comes up with the suspended animation and utilizes the
residual networks to mine the advantages of deeper networks.

III. PROPOSED ALGORITHM

A. Preliminaries and Background

For most widely used GNNs models (e.g., GCN, GAT),
the essence of which is aggregating feature representation for
each node in the full graph, and then using the aggregated
feature representation to accomplish specific tasks. Given a
graph G = (V, E), the aggregation procedure of GNNs layers
is shown as follow:

h(0) = X

h(l+1)[i] = σ(
∑
j∈Ni

αij · h(l)[j]W(l)) (1)

Here, the X ∈ R|V|×F0 is the input feature vectors (matrix)
of all the nodes in graph G; h(l)[i] is the hidden feature of
node i in the lth layer; σ is the non-linear function such
as Relu [21]; W(l) is the learnable linear transfer matrix; α
is a variant of adjacency matrix, which represents different
meanings according to different GNNs models. For example,
in GCN structure, α = Ã is the normalized adjacency matrix.
During the feedforward process, the hidden representations of
node i are updated by aggregating both its features and the
local neighbors’ hidden features. After layers of computing,
the output representations of nodes will be delivered to the

Algorithm 1 Ripple Walk Training for GNNs
Input: Graph G; GNNs model HW(·); loss function Loss(·); training iteration

number T ; subgraph mini-batch size M
Output: Trained HW(·)
1: Initialize subgraph mini-batch batch = {}
2: for k = 1, 2, . . . ,M do
3: Gk ← Ripple Walk Sampler /* By Algorithm 2 */
4: batch = batch ∪ {Gk}
5: end for
6: for t = 1, 2, . . . , T do
7: Select a subgraph from batch as Gt
8: loss = Loss(HW(Gt),yGt) /* The yGt denotes the ground truth of nodes

in Gt. */
9: Update W according to the gradient ∇Wloss

10: end for
11: return HW(·)

downstream tasks. The learnable weights will be optimized
during the backpropagation.

The calculation in Equation 1 uses the full graph of G, and
the full graph involved will easily lead to the concern of node
dependence and neighbors explosion. Since it requires the full
adjacency matrix A and entire feature matrix X, the size of
which would be too large to deal with. Both the increasing
size of the graph (e.g., graph with millions of nodes [5]) and
more sophisticated models (e.g., deeper layers [32]) would
aggravate the problems.

B. Subgraph-based Training

To solve the problem of computationally expensive, an
alternative approach is training the GNNs with RWT. The pro-
cedure of RWT is presented in Algorithm 1. In Algorithm 1,
the subgraph mini-batch size M are varying for different
datasets. Generally, the value of M is to satisfy that the overall
number of sampled nodes (in all subgraphs) is about ten times
the full graph size. Unlike the training process involving the
full graph G, RWT employs a subgraph of G in each training
iteration. In other words, a smaller size of α matrix and only
part of the nodes are required during each training epoch. In
this way, the aggregation procedure in the tth training iteration
is

h(0) = XGt

h(l+1)[i] = σ(
∑

j∈N t
i

αt
ij · h(l)[j]W) (2)

Here, the Gt = (Vt, Et) is a subgraph of G, where Vt ⊆ V
and Et ⊆ E ; N t

i is the neighbor nodes set of node i in Gt;
αt corresponds to the adjacency matrix of Gt. For different
training iterations, different subgraphs will be employed into
Equation 2. Comparing to the Equation 1, the computational
complexity in Equation 2 can be reduced from O(|N ||V|) to
O(|N t||Vt|).

The switch from Equation 1 to Equation 2 is similar
to the change from gradient descent to mini-batch gradient
descent. For RWT, the concerns are also reflected in two
aspects: (1) each subgraph only contains part of the nodes; (2)
subgraph is equivalent to dropping some edges, which means
the dependency (connections) of nodes is incomplete. Unlike
previous data type (e.g., image data), where each data sample
is independent, the graph type data consists of tons of nodes
connected to others. To respond to these concerns and prove

the effectiveness of GNNs models with subgraphs, we propose
the following theorems.

THEOREM 1. Given graph G = (V, E), assume the V ′ ⊆ V
and the nodes in V ′ are randomly sampled from V; H is a
GNNs structure. The objective fucntion of training H with
subset nodes (V ′) (with all neighbors) is equivalent to the
objective fucntion of training with full graph, which can be
presented as:

min
H

1

|V|
∑
i∈V

loss(H(G(i)),yi)
.
= min

H

1

|V ′|
∑
j∈V′

loss(H(G(j)),yj)

(3)

where .
= denotes unbiased estimation; loss(·) is the selected

loss function; G(i) means using node i’s neighbors in G (all
neighbors) during neighbors aggregation.

Proof. Similar to the switch from gradient descent (GD) to
stochastic gradient descent (SGD), where the gradient calcu-
lated in SGD is an estimation of that in GD, the proof of
Theorem 1 also follows the same rule. For the loss fucntion
with full graph G (left part of Equation 3), it has

1

|V|
∑
i∈V

loss(H(G(i)),yi) =
1

|V|
|V| · Ei∈V [loss(H(G(i)),yi)]

= Ei∈V [loss(H(G(i)),yi)]

(4)

In the above equation, the loss function is expressed as the ex-
pectation format. Let us denote the loss function with V ′ (right
part of Equation 3) as L′, L′ = 1

|V′|
∑
j∈V′ loss(H(G(j)),yj).

Since the nodes in V ′ are randomly sampled from V , ac-
cording to the statistical leanrning [1] the L′ is an unbi-
ased estimation of Ei∈V [loss(H(G(i)),yi)]. Thus, we have
Ei∈V [loss(H(G(i)),yi)]

.
= L′, which also means

min
H

1

|V|
∑
j∈V

loss(H(G(j)),yj)
.
= min

H

1

|V ′|
∑
i∈V′

loss(H(G(i)),yi)

THEOREM 2. Under the settings in Theorem 1, the objective
function of training H with subgraph G′ = (V ′, E ′) is equiv-
alent to training with subset nodes V ′ (with all neighbors),
which can be represented as

min
H

1

|V ′|
∑
i∈V′

loss(H(G(i)),yi)
.
= min

H

1

|V ′|
∑
j∈V′

loss(H(G′(j)),yj)

(5)

where G′(j) means using node j’s neighbor in G′ (partial
neighbors).

Proof. The only difference between these two objective func-
tions is the neighbors of each node. Since only the subgraph
G′ = (V ′, E ′) are involved during the training process, for
node i ∈ V ′, only part of its neighbors are also in V ′. In other
words, N ′i ⊆ Ni, where N ′i is the neighbor set of node i in
subgraph G′. According to [10], the feed-forward propagation
of node i can be expressed as

h(l+1)[i] = σ(
∑

k∈Ni

h(l)[k] ·W(l))
.
= σ(|Ni| · Ek∈Ni

[h(l)[k]] ·W(l))

(6)

Algorithm 2 Ripple Walk Sampler
Input: Target graph G = (V, E); expansion ratio r; target subgraph size S
Output: Subgraph Gk
1: Initiate Gk = (Vk, Ek) with Vk = φ
2: Randomly select the initial node vs, add vs into the Gk
3: while |Vk| < S do
4: NS = {n|(n, j) ∈ E, j ∈ Vk, n ∈ V \ Vk} /* Get neighbor nodes set of

current Vk */
5: Randomly select r of nodes in NS, add them into the Vk
6: end while
7: return Gk

The expectation Ek∈Ni
[h(l)[k]] in the above equation can be

estimated by the

Ek∈Ni
[h(l)[k]]

.
=

1

|N ′
i |

∑
k∈N ′

i

h(l)[k] (7)

if the nodes in N ′i are randomly selected from Ni. Given
node k ∈ Ni, we denote the possibility that node k will be
selected into V ′ as p(k|i). We know that ∀k, h ∈ Ni, p(k|i) =
p(k) = p(h) = p(h|i) in every step. Thus the Equation 7 can
be satisfied, and

H(G(i)) .= H(G′(i)), ∀i ∈ V ′ (8)

Therefore, the Equation 5 can hold.

From the analysis above, to achieve the equivalent training
effect, the subgraphs should possess:
• randomness: The randomness contains two aspects: (1)

each node has the same probability to be selected; (2) for
any node, its neighbors own the same probability to be
selected. Randomness can help eliminate the neighbors
explosion problem.

• connectivity: The subgraph should preserve the connec-
tivity in the full graph. The connectivity of each subgraph
should be high enough to preserve the connectivity in
the full graph. This corresponds to the node dependence
problem.

In this way, even though each subgraph cannot singly cover
all the nodes and structure information in G, the batch of
subgraphs can help achieve the same object as the full graph
as long as each subgraph satisfies the randomness and connec-
tivity characteristics. To follow these two characteristics, we
propose the Ripple Walk Sampler algorithm.

C. Ripple Walk Subgraph Sampling

The Ripple Walk Sampler algorithm is shown in Figure 1.
For the subgraph Gk, it is initialized with a random node
vs, then expands along with the connections among nodes.
After multiple expansion steps (sampling), the subgraph with
a specific size (e.g., S) will be returned. During each expansion
step, the neighbor set (shown by the background color region
in Figure 1) contains the potential nodes to be sampled. Then
r (e.g., r = 0.5) of the nodes (shown by colored nodes
in Figure 1) in neighbor set will be added into the current
subgraph. Here, r is the expansion ratio, which means the
ratio of nodes in the neighbor set to be sampled in the current
step. Such an expansion process operates like the “ripple” on
the water. More details of Ripple Walk Sampler are exhibited
in Algorithm 2.

From the analysis in Section III-B, we conclude that it is
ideal if the sampled subgraphs possess both randomness and
connectivity. The Ripple Walk Sampler strategy can maintain
randomness by randomly sampling initial node and random
expansion, while the expansion along edges can guarantee
connectivity. In the following part, we will show the advan-
tages of Ripple Walk Sampler algorithm concerning those two
characteristics.

During the expansion of Ripple Walk Sampler, r deter-
mines the range of the subgraph. When r → 0, it can be
regarded as random sampling. For the randomly sampled
subgraph, the connectivity might be too low to reproduce the
global structure in the full graph. To show the advantages of
Ripple Walk Sampler compared with a random sample, we
first state the following theorem:

THEOREM 3. From graph G, Gk = (Vk, Ek) is the subgraph
generated by Ripple Walk Sampler, while Gr = (Vr, Er) is the
randomly sampled subgraph. Then ∀i, j ∈ Vr and ∀m, l ∈ Vk,
it has

p((i, j) ∈ Er) ≤ p((m, l) ∈ Ek) (9)

where p(·) denotes the probability.

Proof. According to Algorithm 2, in each sampling step, for
∀i ∈ NS, there ∃j ∈ Vk having (i, j) ∈ E . Thus when
Ripple Walk adds one node into the subgraph, one edge will
be added into Ek as well. For Gr, when a new node is selected
into the subgraph, possibly there is no new edge added. For
subgraphs with the same number of nodes, more connections
will selected into Ek comparing to Er. Therefore, we have
p((i, j) ∈ Er) ≤ p((m, l) ∈ Ek).

From Theorem 3, it is obvious that Ripple Walk can join
more connections during the sampling process. Thus the
connectivity of subgraphs by Ripple Walk Sampler is higher
than the randomly sampled subgraphs.

Similar to the Ripple Walk, Breadth-First-Search (BFS) is a
graph search algorithm that expands from one central node and
traverses the whole neighbor set. Essentially, BFS is equivalent
to Ripple Walk Sampler with r → 1. Different from Ripple
Walk Sampler, BFS cannot guarantee the randomness of node
sampling: for BFS, once the initial node vs and the target
subgraph size S are certain, the nodes to be selected into
the subgraph have been determined. In fact, if BFS satisfies
the randomness mentioned in Section III-B, the subgraph
cannot be determined by the initial node. On the other hand,
Ripple Walk Sampler can maintain randomness. Except for
the random initial node, the neighbor nodes in each step are
sampled randomly. Even starting from the same initial node,
Ripple Walk Sampler can still generate different subgraphs.

From the analysis above, Ripple Walk Sampler not only
can keep the randomness of the sampled subgraphs, but also
maintain a relatively high level of connectivity. With these
two characteristics, RWT can solve the neighbors explosion
and node dependence problems, meanwhile reproduce the
information in the full graph. The selection of expansion ratio

1

1

1
1

2

1

2

1

2
2

1

2

1

2
3

3
3

1

2
2

vsvs vs

Expansion 1 Expansion 2 Expansion 3 Subgraph

Fig. 1. Ripple Walk Sampling. In each expansion, the expansion ratio r = 0.5, the background color region represents the neighbor set, the colored nodes
represents the truly sampled nodes. (Best viewed in color)

is important, and we provide the analyses of parameter r in
Section IV-C1.

D. For Deeper Graph Networks

The commonly used GNNs only involve no more than two
layers. According to [14], each GCN layer can be regarded as
one type of Laplacian smoothing, which essentially computes
the features of nodes as the weighted average of itself and
its neighbors’. In other words, GNN structures with much
deeper layers will repeatedly carry out Laplacian smoothing,
and features of nodes will finally converge to the global steady
states. Such smoothing will undermine the learning ability of
GNNs. This point of view also corresponds to the concepts of
over smoothing and mixing time in [23], [17].

By applying GNNs with subgraphs, we will prove that RWT
can eliminate the problem of converging to global steady
states. Subsequently, GNNs with deeper layers can achieve
better learning capability. We will give the following definition
and assumption.

DEFINITION 1. (Node distribution): In graph G = (V, E),
h(0)[i] ∼ Di denotes that the feature representation of node
i ∈ V is under the distribution Di.

In graph G, each node is under a corresponding distribution.
While different nodes might own different labels, we assume
that nodes within the same class share similar distributions.
The assumption can be presented as

Proposition 1. In graph G = (V, E) with i, j, k ∈ V , if yi =
yj and yi 6= yk, then we assume

Eyi=yj [KL(Di,Dj)] ≤ Eyi 6=yk
[KL(Di,Dk)] (10)

where E is the expectation and KL is the Kullback-Leibler
divergence (KL divergence).

KL divergence is a measure of the difference between two
probability distributions. To be simplified, here we call it the
KL divergence of two nodes. It is easy to understand since
the same labeled nodes are more likely to share information
(features) that comes from similar distributions.

According to Equation 1, the computation in each GNNs
layer is the weighted averaging of each node’s neighbors.
If we ignore the linear transform by W(0), from the node
distribution view, it can be written as

h(1)[i] =
∑

k∈Ni

αikh
(0)[k] ∼ Joint(Dk∈Ni

) , D(1)
i (11)

where Joint(Dk∈Ni
) means the weighted average distribution

of each Dk, and we denote Joint(Dk∈Ni
) as D(1)

i . Through one
layer of calculation, the new hidden representation of node i
will be under the Joint(Dk∈Ni) distribution. After l layers, we
denote it as h(l)[i] ∼ D(l)

i .

THEOREM 4. For full graph G = (V, E) and subgraph mini-
batch {G1,G2, . . . ,GM} generated by Ripple Walk Sampler.
Assume the nodes within the local parts are more likely to
share the same label. Let i, j ∈ V and m,n ∈ Vk, Gk =
(Vk, Ek) ∈ {G1,G2, . . . ,GM}. Then,

Em,n∈Vk
[KL(Dm,Dn)] ≤ Ei,j∈V [KL(Di,Dj)] (12)

Proof. According to Ripple Walk Sampler, Gk only covers
part of local nodes in G. Thus for ∀i, j ∈ V and ∀m,n ∈ Vk,
p(yi = yj) ≤ p(ym = yn). Therefore,

Em,n∈Vk
[KL(Dm,Dn)]

=p(ym = yn) · Eym=ynKL(Dm,Dn)

+ p(ym 6= yn) · Eym 6=ynKL(Dm,Dn)

≤p(yi = yj) · Eyi=yjKL(Di,Dj)

+ p(yi 6= yj) · Eyi 6=yj
KL(Di,Dj)

=Ei,j∈V [KL(Di,Dj)]

(13)

From Theorem 4, the distribution similarity of nodes in
the subgraph is higher than that in the full graph. It is easy
to understand since each subgraph generated by Ripple Walk
contains nodes from the local part. The randomness ensures
that different subgraphs could cover other local parts of the
full graph for the subgraph mini-batch. Subsequently, with
the increasing of l, the distribution D(l) in each subgraph
will converge to different steady states: since each subgraph
possesses different nodes and structures. Compared with the
global steady state, different steady states correspond to the
local information within various subgraphs, which can help
improve the learning capacity of deep GNNs.

IV. EXPERIMENTS

To show the effectiveness and efficiency of RWT, extensive
experiments have been conducted on real-world datasets. We
aim to answer the following evaluation questions based on
experimental results together with the detailed analysis:
• Question 1: Can RWT break through the memory bot-

tleneck in order to handle node dependence?
• Question 2: Can RWT accelerate the training speed on

large graphs when facing neighbors explosion?

TABLE I
DATASETS IN EXPERIMENTS

Transductive Inductive
Cora Citeseer Pubmed Flickr Reddit

Nodes 2708 3327 19717 89250 232965
Edges 5429 4732 44338 899756 11606919
Features 1433 3703 500 500 602
classes 7 6 3 7 41
Label rate 0.052 0.036 0.003 0.6 0.6

• Question 3: Can Ripple Walk Sampler provide powerful
subgraphs to support effective and efficient training?

• Question 4: Can RWT tackle the oversmoothing problem
occuring in deep GNNs?

A. Experiment Settings

1) Datasets: We test our algorithms on 5 datasets. Three
of them are standard citation network benchmark datasets:
Cora, Citeseer, and Pubmed [25]. Flickr [31], [18] is built
by forming links between images sharing common metadata
from Flickr. Edges are formed between images from the same
location, submitted to the same gallery, group, or set, images
sharing common tags, images taken by friends, etc. For labels,
Zeng [31] scan over the 81 tags of each image and manually
merged them into 7 classes. Each image belongs to one of
the 7 classes. Reddit [8] is a graph dataset constructed from
Reddit posts. In this case, the node label is the community or
subreddit that a post belongs to.

These datasets involve both the transductive task and in-
ductive task. The transductive task in our experiments is semi-
supervised node classification on one graph; the inductive task
is the node classification on multiple graphs. The information
of them is presented in Table I. The label rate in the table
means the ratio of training data.

2) GNNs Models for Training: We have applied the RWT
to train GCN and GAT models, respectively, which both are
representative and widely used GNN models. The default
models contain two layers. The hidden layers involve different
sizes based on different datasets: for Cora, Citeseer, and
Pubmed, the hidden layers’ size is 32; for Flickr and Reddit,
the hidden size is 128 for GCN layer and 8 for GAT layer.
The dropout rate is 0.5 for Cora, Citeseer, Pubmed, and 0.1 for
Flickr, Reddit. We employ the ADAM [11] as the optimizer.
The learning rate is 0.01, with weight decay as 5× 10−4.

3) Comparison Methods: We compare the GNNs trained
by RWT with state-of-the-art baseline methods:
Comparison Models
• GCN [12]: GCN is a semi-supervised method for the

node classification, which operates on the whole graph.
• GAT [27]: GAT is an attention-based graph neural net-

work for the node classification.
• GraphSAGE [8]: GraphSAGE is a general inductive

framework that leverages node feature information to
generate node embeddings for unseen data efficiently.

• Cluster-GCN [5]: Cluster-GCN is a suitable framework
for SGD-based training. It samples a block of nodes that
associate with a dense subgraph identified by a graph
clustering algorithm and restricts the neighborhood search
within this subgraph.

Comparison Samplers

TABLE II
TEST ACCURACY RESULTS ON ALL DATASETS

Methods Transductive Inductive
Cora Citeseer Pubmed Flickr Reddit

GraphSAGE 0.7660 0.6750 0.7610 0.4030 0.9300
Cluster-GCN 0.682 0.628 0.7947 0.4097 0.9523
GCN 0.815 0.7030 0.7890 0.4400 0.9333
GCN + Random 0.7945 0.687 0.7345 0.4713 0.8243
GCN + BFS 0.8144 0.7079 0.7971 0.4754 0.8123
GCN + RWT 0.825 0.7127 0.8259 0.4797 0.9495
GAT 0.8300 0.7130 0.7903 - -
GAT + Random 0.7921 0.6607 0.6765 0.4534 0.6452
GAT + BFS 0.7756 0.6500 0.7080 0.4642 0.7297
GAT + RWT 0.7994 0.7212 0.8210 0.4724 0.8699

“-” insufficient memory.

• Ripple Walk Sampler: Ripple Walk Sampler is the
sampler proposed in this paper.

• Random: The Random sampler randomly selects a cer-
tain number from all nodes to form a subgraph for
training.

• BFS: The BFS sampler performs a breadth-first search
from the starting node to select subgraphs.

For the Cluster-GCN, the number of clusters is set to make
the average subgraph size the same as Ripple Walk Sampler.
Meanwhile, the self-comparison is conducted among
Ripple Walk Sampler, BFS sampling, and Random sampling
strategies. For these samplers, the sampled subgraph size on
Cora and Citeseer datasets is S = 1500, on Pubmed and Flickr
S = 3000, on Reddit S = 5000. For the subgraph mini-batch
size M , it can be varying for different datasets. Generally, we
make the overall sampled nodes at least twice of the nodes
in a full graph, which also means M × S ' 10|V|. In the
following parts, the “GCN + Random / BFS / RWT” denotes
GCN model training with subgraphs from Random sampler,
BFS sampler and Ripple Walk Sampler, respectively.

We run the experiments on the Server with 3 GTX-1080 ti
GPUs, and all codes are implemented in Python. Code is avail-
able at: https://github.com/anonymous2review/RippleWalk.

B. Experimental Results with Analysis

1) Task Performance Analysis: The overall task perfor-
mance of RWT and comparison methods are exhibited in
Table IV-B. The most important thing about the training
framework RWT is to ensure the training effect of GNN. On
the premise of competitiveness or better task performance, the
advantages of time and space can be meaningful. We can first
observe that GCN and GAT with RWT outperforms plain GCN
and GAT in most of the cases. Here, both GCN and GAT con-
tain two layers. For the GCN model, RWT has better overall
performance than GraphSAGE and Cluster-GCN; for the GAT,
even in some cases when training with a full graph cannot
be executed due to limited memory space (e.g., on Flickr and
Reddit), GAT with RWT can successfully run and achieve high
performance. For the self-comparison, Ripple Walk Sampler
achieves the best results compared with random and BFS sam-
pling. Generally speaking, GNNs with RWT can achieve the
same level or even better testing performance compared with
other popular baseline methods. Meanwhile, the advantages
of RWT on space complexity are significant. In the following

https://github.com/anonymous2review/RippleWalk

TABLE III
MEMORY SPACE USAGE (THE UNIT IS MB)

Cora Citeseer Pubmed Flickr Reddit
GCN 535 605 2057 30392 212003
GCN + RWT 509 587 1235 922 1101
GAT 6921 10277 11868 243089 243089
GAT + RWT 2121 2469 2629 12000 12080

part, we will answer four evaluation questions mentioned
before to validate the efficiency of RWT.

2) Space-consuming Analysis: One of the critical advan-
tages of RWT compared with plain GNNs training is less
space-consuming. To answer Question 1, we first compare the
memory space usage and show them in Table III. It is obvious
that training GNNs with RWT requires less memory space than
plain GNNs. Especially for GAT, the space usage of RWT is
much less than using the full graph. Therefore, when training
plain GNNs is too space-consuming to run, RWT can help
conduct the training process of GNNs and the performance
can be guaranteed. Meanwhile, the less space-consuming of
RWT enables the GNNs to be carried out on GPUs, which
can further accelerate the training. In this part, we do not
compare RWT with other baseline methods, since for the
neighbor node sampling methods such as GraphSAGE [8],
FastGCN [4] or methods in [3], [10] do not apply the subgraph
training concept. Thus their space complexity will be the
same with the plain GNNs. Therefore we can conclude that
while maintaining the high-level testing performance, RWT
can significantly minimize the space-consuming when running
GNNs. In this way, RWT break the memory bottleneck when
facing huge graphs. The experimental results also validate
our previous theoretic analyses about both effectiveness and
efficiency.

TABLE IV
TRAINING TIME (THE UNIT IS SECOND)

Cora Citeseer Pubmed Flickr Reddit
GCN 4.573 1.968 61.90 1161.92 25370
GCN + RWT 1.964 1.826 8.698 1.179 7.722
GAT 413.3 500.1 - - -
GAT + RWT 71.44 47.06 139.4 68.06 2614

“-” insufficient memory.
3) Time-consuming Analysis: To answer Question 2, we

further record the duration time of the training process and
present it in Table IV. The running time of GCN on Flickr
and Reddit datasets, GAT + RWT on Reddit dataset is based
on the CPU server. All other convergence time is recorded
on GPUs. By applying RWT, the running time of GNNs
models can be reduced by a large margin. Thus the RWT
on GNNs not only requires less memory space but also can
accelerate the convergence of the training process. Such results
can be explained intuitively since each training epoch of
RWT involves less space and computation complexity. While
sharing the same computational quantity, RWT possesses more
training iterations than plain GNNs training.

4) Sampler performance Analysis: To answer Question 3,
we conduct comparison experiments among different samplers.
From Table IV-B, we can notice that Ripple Walk Sampler
outperforms other samplers on all five datasets. These results
verify that the subgraphs provided by Ripple Walk Sampler
are more beneficial for graph model training. Random sampler

1 2 3 4 5 6
Number of layers

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

GCN with full graph
GCN with RWT

Fig. 2. GCN with Deeper Layers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of r

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Te
st

 a
cc

ur
ac

y

GCN with RWT
GAT with RWT

Fig. 3. GNNs with Different r

leans towards randomness, while BFS sampler focuses on
connectivity too much. They can not consider randomness and
connectivity simultaneously, yet Ripple Walk Sampler can do
so. It also validates our theoretical analysis in Section III-B.

5) For Deeper Graph Networks: We test GCN models
with different numbers of layers to answer Question 4. The
results are shown in Figure 2. We show the results on the
Pubmed dataset, and the experimental results are consistent
in other datasets. We can observe that GCN with RWT
achieves better performance than plain GCN on the test loss
and accuracy. Besides, with the structure goes deeper, even
when the performance of GCN decreases, GCN with RWT
achieves higher performance. Thus with the support of RWT,
the problem of oversmoothing can be eliminated, and GNNs
models can be designed with deeper structure. From such
phenomenon, deeper GNNs models such as [32] can benefit
from the RWT.

C. Parameter Analysis

1) Expansion Ratio r Analysis: To verify the analysis
of r in Subsection III-C, we implement experiments of
Ripple Walk Sampler with different expansion ratios, and
present the results in Figure 3. We show the results on Pubmed,
and the experimental results are consistent in all datasets.
According to previous analysis in Subsection III-C, r → 0 or
r → 1 do not help maintain the randomness and connectivity
characteristics in subgraphs. From the results we can observe
that when r = 0.5, RWT achieve the best performance and
the performance decreases when r → 1 or r → 0. Therefore,
the results verify our previous analysis, The subgraphs sam-
pled by Ripple Walk Sampler consider both randomness and
connectivity, which are beneficial to subgraph-based training
for GNNs.

2) Subgraph Mini-batch Size M Analysis: As mentioned
above, we have applied the subgraph mini-batch size to satisfy
the M × S ' 10|V|. Give a fixed subgraph size S, we

10 20 30 40 50 60 70 80 90 100
Value of M

0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83

Te
st

 a
cc

ur
ac

y

GCN with RWT
GAT with RWT

Fig. 4. GNNs with Different values of M

also attempt different values of M and present the results on
Pubmed dataset with S = 3000 and M ∈ {10, 20, . . . , 100} in
Figure 4. Both GCN and GAT with RWT have relatively worse
performance when M is small (e.g., M ∈ {10, 20, 30}). With
the increase of M , the performance becomes better and finally
maintains at a high level. It is intuitive that with a smaller
subgraph mini-batch size M , less information of the full graph
can be covered. While M rising, more subgraphs combinations
will be selected to draw the information (e.g., connections)
within the full graph. On the other hand, along with increasing
M , subgraphs with similar nodes and edges could be sampled.
Such similar subgraphs may cause redundant information
extraction from the full graph, and the performance will finally
converge instead of improving continuously.

V. CONCLUSION

In this paper, we have introduced a subgraph-based train-
ing framework RWT for GNNs, which combines the idea
of training GNNs with mini-batch subgraphs and a novel
subgraph sampling method Ripple Walk Sampler. We analyze
the effectiveness and efficiency of the Ripple Walk and prove
them from the theoretical perspective. Extensive experiments
demonstrate that RWT achieves the same level or even better
performance, but less training time and device memory space
are required. At the same time, RWT can help relieve the
problem of oversmoothing when models go deeper, enabling
the GNNs to have stronger learning power and potential.

REFERENCES

[1] George W. Brown. On small-sample estimation. The Annals of
Mathematical Statistics, 18(4):582–585, 1947.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks on graphs.
arXiv:1312.6203, 2013.

[3] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph
convolutional networks with variance reduction. In Proceedings of the
35th International Conference on Machine Learning, 2018.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv:1801.10247,
2018.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. Cluster-gcn: An efficient algorithm for training deep and
large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 257–266, 2019.

[6] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein
interface prediction using graph convolutional networks. In Advances in
neural information processing systems, pages 6530–6539, 2017.

[7] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale
learnable graph convolutional networks. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1416–1424, 2018.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in neural information processing
systems, pages 1024–1034, 2017.

[9] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional
networks on graph-structured data. arXiv:1506.05163, 2015.

[10] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive
sampling towards fast graph representation learning. In Advances in
neural information processing systems, pages 4558–4567, 2018.

[11] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representaion,
2015.

[12] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representaion, 2017.

[13] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein.
Cayleynets: Graph convolutional neural networks with complex rational
spectral filters. IEEE Transactions on Signal Processing, 67(1):97–109,
2018.

[14] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[15] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive
graph convolutional neural networks. In Thirty-second AAAI conference
on artificial intelligence, 2018.

[16] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S
Zemel. Lanczosnet: Multi-scale deep graph convolutional networks.
arXiv:1901.01484, 2019.

[17] László Lovász et al. Random walks on graphs: A survey. Combinatorics,
Paul erdos is eighty, 2(1):1–46, 1993.

[18] Julian McAuley and Jure Leskovec. Image labeling on a network:
using social-network metadata for image classification. In European
conference on computer vision, pages 828–841. Springer, 2012.

[19] Alessio Micheli. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[20] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola,
Jan Svoboda, and Michael M Bronstein. Geometric deep learning on
graphs and manifolds using mixture model cnns. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
5115–5124, 2017.

[21] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[22] Yuxiang Ren and Jiawei Zhang. Hgat: Hierarchical graph attention
network for fake news detection. arXiv preprint arXiv:2002.04397,
2020.

[23] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Drope-
dge: Towards deep graph convolutional networks on node classification.
arXiv:1907.10903, 2019.

[24] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

[26] Alessandro Sperduti and Antonina Starita. Supervised neural networks
for the classification of structures. IEEE Transactions on Neural
Networks, 8(3):714–735, 1997.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In Interna-
tional Conference on Learning Representaion, 2018.

[28] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv:1810.00826, 2018.

[30] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-
ichi Kawarabayashi, and Stefanie Jegelka. Representation learning on
graphs with jumping knowledge networks. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

[31] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

[32] Jiawei Zhang and Lin Meng. Gresnet: Graph residual network for
reviving deep gnns from suspended animation. In arXiv:1909.05729,
2019.

[33] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing
in gnns. arXiv:1909.12223, 2019.

	Introduction
	Related Works
	Proposed Algorithm
	Preliminaries and Background
	Subgraph-based Training
	Ripple Walk Subgraph Sampling
	For Deeper Graph Networks

	Experiments
	Experiment Settings
	Datasets
	GNNs Models for Training
	Comparison Methods

	Experimental Results with Analysis
	Task Performance Analysis
	Space-consuming Analysis
	Time-consuming Analysis
	Sampler performance Analysis
	For Deeper Graph Networks

	Parameter Analysis
	Expansion Ratio r Analysis
	Subgraph Mini-batch Size M Analysis

	Conclusion
	References

