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Abstract—Network alignment aims at inferring a set of anchor links matching the shared entities between different information
networks, which has become a prerequisite step for effective fusion of multiple information networks. In this paper, we will study the
network alignment problem to fuse online social networks specifically. Social network alignment is extremely challenging to address
due to several reasons, i.e., lack of training data, network heterogeneity and one-to-one constraint. Existing network alignment works
usually require a large number of training instances, but such a demand can hardly be met in applications, as manual anchor link
labeling is extremely expensive. Significantly different from other homogeneous network alignment works, information in online social
networks is usually of heterogeneous categories, the incorporation of which in model building is not an easy task. Furthermore, the
one-to-one cardinality constraint on anchor links renders their inference process intertwistingly correlated. To resolve these three
challenges, a novel network alignment model, namely ActiveIter (Active Iterative Alignment), is introduced in this paper. The model
ActiveIter defines a set of inter-network meta diagrams for anchor link feature extraction, adopts active learning for effective label query
and uses greedy link selection for anchor link cardinality filtering. Extensive experiments were performed on a real-world aligned
networks dataset, and the experimental results have demonstrated the effectiveness of ActiveIter compared with other state-of-the-art
baseline methods.
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1 INTRODUCTION

FOrmally, the network alignment problem [1], [2] denotes
the task of inferring the set of anchor links [3] between

the shared information entities in different networks, where
the anchor links are usually assumed to be subject to the
one-to-one cardinality constraint [4]. Network alignment has
concrete applications in the real world, which can be ap-
plied to discover the set of shared users between different
online social networks [1], [3], identify the common pro-
tein molecules between different protein-protein-interaction
(PPI) networks [2], [5], [6], and find the mappings of POIs
(points of interest) across different traffic networks [1]. In
this paper, we will use online social networks as an example
of a real world setting of the network alignment problem
and also use this setting to elucidate the proposed model.

Online social networks usually have very complex struc-
tures, involving different categories of nodes and links.
For instance, in online social networks, like Twitter and
Foursquare as shown in Figure 1, users can perform various
kinds of social activities, e.g., following other users, writing
posts. Viewed in such a perspective, their network struc-
tures will contain multiple types of nodes and links, i.e.,
“User”, “Post” (node types), and “Follow”, “Write” (link
types). Users’ personal preference may steer their online
social activities, and the network structure can provide
insightful information for differentiating users between net-
works. Furthermore, the nodes in online social networks
can be also attached with various types of attributes. For
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example, the written post nodes can contain words, lo-
cation check-ins and timestamps (attribute types), which
will provide complementary information for inferring users’
language usage, spatial and temporal activity patterns re-
spectively. Based on such an intuition, both the network
structure and attribute information should be incorporated
in the network alignment model building.

Most of the existing network alignment models are based
on supervised learning [3], which aim at building classi-
fication/regression models with a large set of pre-labeled
anchor links to infer the remaining unlabeled ones (where
the existing and non-existing anchor links are labeled as
the positive and negative instance respectively). For the
network alignment task, pre-labeled anchor links can pro-
vide necessary information for understanding the patterns
of aligned user pairs in their information distribution, espe-
cially compared with the unsupervised alignment models
[1], [2]. However, for the real-world online social networks,
cross-network anchor link labeling is not an easy task, since
it requires tedious user-account pairing and manual user-
background checking, which can be very time-consuming
and expensive. Therefore, a large training data set as re-
quired by existing network alignment models [3] is rarely
available in the real world.
Problem Studied: In this paper, we propose to study the
heterogeneous network alignment problem based on the
active learning setting, which is formally referred to the
Active heterogeNeous Network Alignment (ANNA) problem.
Subject to the pre-specified query budget (i.e., the label
query times), ANNA allows the models to selectively query
for extra labels of the unlabeled anchor links in the learning
process. In Figure 1, we shown an example of the ANNA
problem between the Foursquare and Twitter social net-
works.
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Fig. 1. An example of attributed heterogeneous social networks alignment (Foursquare and Twitter).

The current research has not studied the heterogeneous
network alignment problem based on active learning setting
yet. The ANNA problem is a novel yet difficult task, and
the challenges mainly come from three perspectives, e.g.,
network heterogeneity, paucity of training data, and one-to-one
constraint.

• Network Heterogeneity: According to the aforementioned
descriptions, both the complex network structure and
the diverse attributes have concrete physical meanings
and can be useful for the social network alignment
task. To incorporate such heterogeneous information
in model building, a unified approach is required to
handle the network structure and attribute information
in a unified analytic.

• Paucity of Training Data: To overcome problems caused
by paucity of training data, besides the labeled anchor
links, active learning also allows models to query for
extra labels of unlabeled instances. In this context,
active learning application in network alignment still
remains unexplored.

• One-to-One Cardinality Constraint: Last but not the least,
the anchor links to be inferred are not independent in
the networked data scenario. The one-to-one cardinality
constraint on anchor links will limit the number of
anchor links incident to the user nodes [3], [4], which
renders the information of positive and negative anchor
links to be imbalanced. For each user, if one incident
anchor link is identified to be positive, the remaining
incident anchor links will all be negative by default.
Viewed from such a perspective, positive anchor links
contribute far more information compared with the
negative ones. Effectively maintaining and utilizing
such a constraint on anchor links in the active label
query and model building is a challenging problem.

To address these challenges, we will introduce a new
network alignment model, namely Active Iterative Alignment
(ActiveIter), in this paper. To model the diverse information
available in social networks, ActiveIter adopts the attributed
heterogeneous social network concept to represent the com-
plex network structure and the diverse attributes on nodes
and links. Furthermore, a unified feature extraction method
will be introduced in ActiveIter , based on a novel concept
namely meta diagram. To deal with the paucity of training
data, active learning will be adopted in ActiveIter to utilize

the unlabeled anchor links in model building by querying
for extra anchor link labels based on a designated stratedy
within certain pre-specified query budget. Due to the one-to-
one constraint, the unlabeled anchor links no longer bears
equal information, and querying for labels of potential
positive anchor links will be more “informative” compared
with negative anchor links. Among the unlabeled links, Ac-
tiveIter aims at selecting a set of mis-classified false-negative
anchor links as the potential candidates. Using such an
approach contributes to not only these queried labels but
also other potential extra label corrections of the conflicting
negative links. An innovative query strategy is proposed
to make sure that ActiveIter can select mis-classified false-
negative anchor links more precisely. ActiveIter can out-
perform other non-active models with less than 10% of
extra training instances which has the additional benefits
of reducing the time and space complexity.

The remaining parts of this paper will be organized as
follows. In Section 2, we will introduce the definitions of
critical terminologies and the formal problem statement.
Detailed information about the proposed model will be
provided in Section 3, whose effectiveness and efficiency
will be tested in Section 4. Related works will be talked
about in Section 5, and finally in Section 6 we will conclude
this paper.

2 CONCEPT AND PROBLEM DEFINITION

In this section, we will define several important concepts
used in this paper, and provide the formulation of the ANNA
problem.

2.1 Terminology Definition
Definition 1 (Attributed Heterogeneous Social Networks):
The attributed heterogeneous social network studied in this
paper can be represented asG = (V, E , T ), where V =

⋃
i Vi

and E =
⋃
i Ei represent the sets of diverse nodes and com-

plex links in the network. The set of attributes associated
with nodes in V can be represented as set T =

⋃
i Ti (Ti

denotes the ith-type of attributes).
Meanwhile, for the attributed heterogeneous social networks

with shared users, they can be represented as the multiple
aligned attributed heterogeneous social networks (or aligned social
networks for short).
Definition 2 (Multiple Aligned Social Networks):
Given online social networks G(1), G(2), · · · ,
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G(n) sharing common users, they can be repre-
sented as the multiple aligned social networks G =(

(G(1), G(2), · · · , G(n)), (A(1,2),A(1,3), · · · ,A(n−1,n))
)

,

where A(i,j) represents the set of undirected anchor links
connecting the common users between G(i) and G(j).

In Figure 1, we show an example of two aligned social net-
works, Foursquare and Twitter, which can be represented as
G = ((G(1), G(2)),A(1,2)). Formally, the Twitter network can
be represented as G(1) = (V(1), E(1), T (1)), where V(1) =
U (1)∪P(1) denotes the set of nodes in the network including
users and posts, and E(1) = E(1)

u,u ∪ E(1)
u,p involves the sets of

social links among users as well as write links between users
and posts. For the posts, a set of attributes can be extracted,
which can be represented as T (1) = T (1)

w ∪T (1)
l ∪T

(1)
t denot-

ing the words, location checkins and timestamps attached
to the posts in P(1) respectively. The Foursquare network
has a similar structure as Twitter, which can be represented
as G(2) = (V(2), E(2), T (2)). Twitter and Foursquare are
aligned together by the user anchor links connecting the
shared users, and they also share some common attributes
at the same time.

In this paper, we will focus on two aligned social networks
G = ((G(1), G(2)),A(1,2)) to illustrate the problem setting
and proposed model.

2.2 Problem Definition
Problem Definition: Given a pair of partially aligned social
networks G = ((G(1), G(2)),A(1,2)), we can represent all the
potential anchor links between networks G(1) and G(2) as
setH = U (1)×U (2), where U (1) and U (2) denote the user sets
in G(1) and G(2) respectively. For the known links between
networks, we can group them as a labeled set L = A(1,2).
The remaining anchor links with unknown labels are those
to be inferred, and they can be formally denoted as the
unlabeled set U = H \ L. In the ANNA problem, based on
both labeled anchor links in L and unlabeled anchor links
in U , we aim at building a mapping function f : H → Y
to infer anchor link labels in Y = {0,+1} subject to the
one-to-one constraint, where class labels +1 and 0 denote the
existing and non-existing anchor links respectively. Besides
these known links, in the ANNA problem, we are also
allowed to query for the label of links in set U with a pre-
specified budget b, i.e., the number of allowed queries. Be-
sides learning the optimal variables in the mapping function
f(·), we also aim at selecting an optimal query set Uq to
improve the performance of the learned mapping function
f(·) as much as possible.

3 PROPOSED METHOD
In this section, we will introduce the proposed model Ac-
tiveIter in detail. At the very beginning, we will introduce
the notations used in this paper. After that, the formal def-
inition of Meta Diagram will be provided, based on which a
set of meta diagram based features will be extracted. Finally,
we will introduce the active network alignment model for
anchor link inference.

3.1 Notations
In the sequel, we will use lower case letters (e.g., x) to
denote scalars, lower case bold letters (e.g., x) to denote
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Fig. 2. Schema of aligned networks.

column vectors, bold-face upper case letters (e.g., X) to
denote matrices, and upper case calligraphic letters (e.g., X )
to denote sets. The ith entry of vector x is denoted as x(i).
Given a matrix X, we denote X(i, :) (and X(:, j)) as the ith
row (and the jth column) of X, and the (ith, jth) entry of
matrix X can be denoted as X(i, j) or Xi,j (which are inter-
changeable). We use X> (and x>) to denote the transpose
of matrix X (and vector x). For vector x, we denote its Lp-
norm as ‖x‖p = (

∑
i |xi|p)

1
p , and the Lp-norm of matrix

X can be represented as ‖X‖p = (
∑
i,j |X(i, j)|p)

1
p . Given

two vectors x, y of the same dimension, we use notation
x ≤ y to denote that entries in x are no greater than the
corresponding entries in y.

3.2 Meta Diagram based Proximity Features

The attributed heterogeneous social network introduced in Sec-
tion 2 provides a unified representation for most of the
popular online social networks, like Facebook, Twitter and
Foursquare.

3.2.1 Network Schema and Inter-Network Meta Path
To effectively categorize the diverse information in the
aligned social networks, we introduce the aligned network
schema concept as follows.
Definition 3 (Aligned Social Network Schema): For-
mally, the schema of the given aligned social networks
G = ((G(1), G(2)),A(1,2)) can be represented as SG =

((SG(1) , SG(2)), {anchor}). Here, SG(1) = (N (1)
V ∪ NT ,RE ∪

RA), where N (1)
V and NT denote the set of node types

and attribute types in the network, while RE represents
the set of link types in the network, and RA denotes the
set of association types between nodes and attributes. In
a similar way, we can represent the schema of G(2) as
SG(2) = (N (2)

V ∪NT ,RE ∪RA).
In the above definition, to simplify the representations,

(1) the attribute types have no superscript, since lots of
attribute types can be shared across networks; and (2) the
relation types also have no superscript, and the network
they belong to can be easily differentiated according to the
superscript of user/post node types connected to them.
According to the definition, as shown in Figure 2, we can
represent the Twitter network schema as SG(1) = (N (1),R),
N (1) = {User(1), Post(1), Word, Location, Timestamp} (or
N (1) = {U(1), P(1), W, L, T} for short) and R = {follow,
write, at, check-in}. The Foursquare network schema has
exactly the same representation, and it can be denoted as
SG(2) = (N (2),R), where N (2) = {U(2), P(2), W, L, T} and
R = {follow, write, at, check-in}. Nodes between Twitter
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TABLE 1
Summary of Inter-Network Meta Diagrams.

ID Notation Meta Diagram Semantics

P1 U→ U↔ U← U User
follow−−−−−→ User anchor←−−−−→ User

follow←−−−−− User Common Anchored Followee

P2 U← U↔ U→ U User
follow←−−−−− User anchor←−−−−→ User

follow−−−−−→ User Common Anchored Follower

P3 U→ U↔ U→ U User
follow−−−−−→ User anchor←−−−−→ User

follow−−−−−→ User Common Anchored Followee-Follower

P4 U← U↔ U← U User
follow←−−−−− User anchor←−−−−→ User

follow←−−−−− User Common Anchored Follower-Followee

P5 U→ P→ T← P← U User write−−−−→ Post at−−→ Timestamp at←−− Post write←−−−− User Common Timestamp

P6 U→ P→ L← P← U User write−−−−→ Post checkin−−−−−−→ Location checkin←−−−−−− Post write←−−−− User Common Checkin

Ψ1(P1 × P2) U↔ U anchor←−−−−→ U↔ U UserUser
anchor

User

follow

follow

User

follow

follow

Common Aligned Neighbors

Ψ2(P5 × P6) U P
T

L
P U User write−−−−→ Location

Timestamp
Post

checkin

at

Post
checkin

at

write←−−−− User Common Attributes

Ψ3(P1 × P5 × P6)

U

U P
T

L
P U

U
Location

Timestamp
Post

checkin

at

Post
checkin

at

UserUser
anchor

User
write

follow

User
write

follow

Common Aligned Neighbor & Attributes

and Foursquare can be connected with each other via con-
nections consisting of various types of links. To categorize
all these possible connections across networks, we define
the concept of inter-network meta path based on the schema
as follows:
Definition 4 (Inter-Network Meta Path): Based
on an aligned attributed network schema,
SG = ((SG(1) , SG(2)), {anchor}), path P = N1

R1−−→
N2

R2−−→ · · · Rn−1−−−→ Nn is defined to be an inter-network
meta path of length n − 1 between networks G(1) and
G(1), where Ni ∈ N (1) ∪ N (2), i ∈ {1, 2, · · · , n}
and Ri ∈ R ∪ {anchor}, i ∈ {1, 2, · · · , n − 1}. In
this paper, we are only concerned about inter-network
meta paths connecting users across networks, in which
N1, Nn ∈ {U(1),U(2)} ∧N1 6= Nn.

Based on the aligned network schema shown in Fig-
ure 2, several inter-network meta paths {P1,P2, · · · ,P6} can
be defined, whose physical meanings and notations are
summarized in the top part of Table 1.

3.2.2 Inter-Network Meta Diagram
For the applications on real-world online social networks,
these meta paths extracted in the pervious subsection may
suffer from two major disadvantages. Firstly, meta path
cannot characterize rich semantics. For instance, given two
users u(1)

i and u
(2)
j with check-in records “u(1)

i : (Chicago,
Aug. 2016), (New York, Jan. 2017), (Los Angeles, May
2017)”, and “u(2)

j : (Los Angeles, Aug. 2016), (Chicago, Jan.
2017), (New York, May 2017)” respectively, based on meta
path P5 and P6, user pair u(1)

i , u(2)
j have a lot in common

and are highly likely to be the same user, since they have
either checked-in the same locations (for 3 times) or at
the same time (for 3 times). However, according to their
check-in records, we observe that their activities are totally
“dislocated” as they have never been at the same place for
the same moments. Secondly, different meta paths denote
different types of connections among users, and assembling
them in an effective way is another problem. Actually, the
meta paths can not only been concatenated but also stacked.
Based on such an intuition, to solve these two challenges, we
introduce a new concept Inter-Network Meta Diagram, which
is a meta subgraph that fuses diverse relationships together

for capturing richer semantic information across aligned
attributed heterogeneous networks specifically. Inter-network
meta diagram is different from the intra-network meta graph
[7] and meta structure [8] concepts proposed in the existing
works, since it mainly exists across multiple heterogeneous
networks. More detailed information about these concepts
and their differences will be provided in Section 5.
Definition 5 (Inter-Network Meta Diagram): Give a net-
work schema as SG = ((SG(1) , SG(2)), {anchor}), an inter-
network meta diagram can be formally represented as a
directed acyclic subgraph Ψ = (NΨ,RΨ, Ns, Nt), where
NΨ ⊂ N (1) ∪ N (2) and RΨ ⊂ R ∪ {anchor} repre-
sents the node, attribute and link types involved, while
Ns, Nt ∈ {U(1),U(2)}∧Ns 6= Nt denote the source and sink
user node types from network G(1) and G(2) respectively.

Inter-network meta diagram proposed for the aligned at-
tributed heterogeneous networks involves not only regular
node types but also attribute types and it connects user
node types across networks, which renders it different from
the recent intra-network meta structure [8] or meta graph
[7] concepts proposed for single non-attributed networks.
Several meta diagram examples have been extracted from
the networks as shown at the bottom part of Table 1
which can be represented as {Ψ1,Ψ2,Ψ3}. Here, the meta
diagrams Ψ1 and Ψ2 are composed of 2 meta paths based
on social relationship and anchor (i.e., P1 and P2), as well
as attributes (i.e., P5 and P6) respectively; Ψ3 is composed
of 3 meta paths P1, P5 and P6 respectively. Besides these
listed meta diagram examples shown in Table 1, several
other meta diagrams are also extracted. Formally, we can use
Pf = {P1,P2,P3,P4} and Pa = {P5,P6} represent the sets
of meta paths composed of the social relationships and the
attributes respectively. The complete list of inter-network
meta diagrams extracted in this paper are listed as follows:
• Ψf2 (Pf × Pf ): Common Aligned Neighbors.
• Ψa2 (Pa × Pa): Common Attributes.
• Ψf,a (Pf × Pa): Common Aligned Neighbor & Attribute.
• Ψf,a2 (Pf × Pa × Pa): Common Aligned Neighbor &
Attributes.
• Ψf2,a2 (Pf ×Pf ×Pa×Pa): Common Aligned Neighbors
& Attributes.

Here, Ψf2 = Pf × Pf = {Pi × Pj}Pi∈Pf ,Pj∈Pf
, and
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Ψf,a = Pf × Pa = {Pi × Pj}Pi∈Pf ,Pj∈Pa
, and similar for

the remaining notations. The operator Pi × Pj denotes the
stacking of meta paths Pi and Pj via the common node
types shared by them. For instance, Ψ1 is an anchor meta
diagram composed by stacking two anchor meta paths of
social relationships, i.e., Ψ1 ∈ Ψf2 . Actually, meta path is
also a special type of meta diagram in the shape of path. To
unify the terms, we will misuse meta diagram to refer to
both meta path and meta diagram in this paper. Formally, all
the meta diagrams extracted from the social networks can be
represented as Ψ = P ∪Ψf2 ∪Ψa2 ∪Ψf,a ∪Ψf,a2 ∪Ψf2,a2 .

3.2.3 Proximity Feature Extraction with Meta Diagram

Given a pair of users, e.g., u(1)
i and u

(2)
j , based on meta

diagram Ψk ∈ Ψ, we can represent the set of meta diagram
instances connecting u(1)

i and u
(2)
j as PΨk

(u
(1)
i , u

(2)
j ). Users

u
(1)
i and u

(2)
j can have multiple meta diagram instances

going into/out from them. Formally, we can represent all the
meta diagram instances going out from user u(1)

i (or going
into u

(2)
j ), based on meta diagram Ψk, as set PΨk

(u
(1)
i , ·)

(or PΨk
(·, u(2)

j )). The proximity score between u
(1)
i and

u
(2)
j based on meta diagram Ψk can be represented as the

following meta proximity concept formally.
Definition 6 (Meta Diagram Proximity): Based on meta
diagram Ψk, the meta diagram proximity between users u(1)

i

and u(2)
j in G can be represented as

sΨk
(u

(1)
i , u

(2)
j ) =

2|PΨk
(u

(1)
i , u

(2)
j )|

|PΨk
(u

(1)
i , ·)|+ |PΨk

(·, u(2)
j )|

.

Meta diagram proximity considers not only the meta di-
agram instances between u

(1)
i and u

(2)
j but also penalizes

those going out from and into u
(1)
i and u

(2)
j , respectively,

at the same time. Since the meta diagrams span the whole
network, both the local and global network structure can
be captured by the the meta diagrams. With the above
meta proximity definition, we can represent the meta prox-
imity scores among all users in the network G based on
meta diagram Ψk as matrix SΨk

∈ R|U|×|U|, where entry
SΨk

(i, j) = sΨk
(u

(1)
i , u

(2)
j ). All the meta proximity matrices

defined for network G can be represented as {SΨk
}Ψk∈Ψ.

Meanwhile, according to the meta proximity definition,
to compute the proximity scores among users, we need
to count the number of meta diagram instances connect-
ing users. However, different from the meta path instance
counting (which can be done in polynomial time), counting
the number of meta diagram instances among users is never
an easy task. It involves the graph isomorphism step to
match subnetworks with the meta diagram structure and
node/link types. To lower down the computational time
costs, we propose the minimum meta diagram covering set
concept, which will be applied to shrink the search space
of nodes in the networks.
Definition 7 (Meta Diagram Covering Set): Give a anchor
meta diagram Ψ starting and ending with node types ns
and nt, Ψ will contain multiple paths connecting ns and
nt. Formally, these covered paths connecting ns and nt
can be represented as the covering set of Ψ, i.e., C(Ψ) =
{P1,P2, · · · ,Pn}, where Pi ∈ C(Ψ) denotes a meta path

from ns to nt. Anchor meta diagram Ψ can be decomposed
in different ways, and we are only interested in the minimum
meta diagram covering set with the smallest size |C(Ψ)|. The
the anchor meta diagram covering set recovers the set of
meta paths composing the diagrams as introduced before,
which can clearly indicate the relationship between meta
path and meta diagram.
LEMMA 1: Given a meta diagram Ψ, a pair of nodes
u

(1)
i , u

(2)
j ⊂ V are connected by instances of meta diagram

Ψ iff u(1)
i , u

(2)
j can be connected by instances of all meta

paths in its covering set C(Ψ).
PROOF: The lemma can be proved by contradiction. Let’s
assume the lemma doesn’t hold, and ∃Pk ∈ C(Ψ) that
cannot connect u(1)

i , u
(2)
j in the network, given that Ψ has

an instance connecting u(1)
i , u

(2)
j . Since Pk is one part of Ψ,

and we can identify the corresponding parts of Pk from Ψ’s
instance, which will create a path connecting u(1)

i with u(2)
j .

It contradicts the assumption. Therefore, the Lemma should
hold.

Furthermore, based on the above Lemma 1, we can also
derive the relationship between the covering sets of meta
diagrams.
LEMMA 2: Given two meta diagrams Ψi and Ψj , where
C(Ψi) ⊆ C(Ψj), if a pair of nodes u(1)

i , u
(2)
j ⊂ V can be

connected by instances of meta diagram Ψj , there will also be
an instance of meta diagram Ψi connecting u

(1)
i , u

(2)
j in the

network as well.
The above lemma can be proved in a similar way as

the proof of Lemma 1, which will not be introduced here
due to the limited space. Based on the above lemmas, we
propose to apply the meta diagram covering set to help shrink
the search space. First of all, we can compute the set of
meta path instances connecting users across networks. For-
mally, given a meta diagram Ψk, we can obtain its minimum
covering set C(Ψk). For each meta path in C(Ψ), a set of
meta path instances connecting the input node pairs can be
extracted. By combining these meta path instances together
and checking their existence in the network, we will extract
instances of Ψ. Furthermore, in the case that there exist a
prior computation result of meta diagram Ψk′ with covering
set C(Ψk′) ⊂ C(Ψk), instead of recompute the diagram
instances based on meta paths in C(Ψ), we can just combine
the meta diagram instances of Ψk′ and the instances of meta
paths in C(Ψk) \ C(Ψk′) to get the instances for Ψk.

3.3 Active Network Alignment Model
In this part, we will introduce the active network alignment
model ActiveIter for the anchor link prediction across net-
works, which involves 4 main components: (1) discriminative
function for labeled instances, (2) generative function for un-
labeled instance, (3) one-to-one constraint modeling, and (4)
active query component.

3.3.1 Labeled Data Discriminative Loss Function
For all the potential anchor links in set H (involving both
the labeled and unlabeled anchor link instances), a set
of features will be extracted based on the meta diagrams
introduced before. Formally, the feature vector extracted for
anchor link l ∈ H can be represented as vector xl ∈ Rd
(parameter d denotes the feature size). Meanwhile, we can
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denote the label of link l ∈ L as yl ∈ Y (Y = {0,+1}),
which denotes the existence of anchor link l between the
networks. For the existing anchor links in set L+, they will
be assigned with +1 label; while the labels of anchor links
in U are unknown. All the labeled anchor links in set L+

can be represented as a tuple set {(xl, yl)}l∈L+
. Depending

on whether the anchor link instances are linearly separable
or not, the extracted anchor link feature vectors can be
projected to different feature spaces with various kernel
functions g : Rd → Rk. For instance, given the feature vector
xl ∈ Rd of anchor link l, we can represent its projected
feature vector as g(xl) ∈ Rk. In this paper, the linear kernel
function will be used for simplicity, and we have g(xl) = xl
for all the links l.

In the active network alignment model, the discrimina-
tive component can effectively differentiate the positive in-
stances from the non-existing ones, which can be denoted
as mapping f(·; θf ) : Rd → {+1, 0} parameterized by θf .
In this paper, we will use a linear model to fit the link
instances, and the discriminative model to be learned can be
represented as f(xl;w) = w>xl + b, where θf = [w, b]. By
adding a dummy feature 1 for all the anchor link feature
vectors, we can incorporate bias term b into the weight
vector w and the parameter vector can be denoted as
θf = w for simplicity. Based on the above descriptions, we
can represent the introduced discriminative loss function on
the labeled set L+ as

L(f,L+;w) =
∑
l∈L+

(
f(xl;w)− yl

)2
=
∑
l∈L+

(w>xl − yl)2.

3.3.2 Unlabeled Data Generative Loss Function
Meanwhile, to alleviate the insufficiency of labeled data,
we also propose to utilize the unlabeled anchor links to
encourage the learned model can capture the salient struc-
tures of all the anchor link instances. Based on the above
discriminative model function f(·;w), for a unlabeled an-
chor link l ∈ U , we can represent its inferred “label” as
yl = f(xl;w). Considering that the result of f(·;w) may
not necessary the exact label values in Y , in the generative
component, we can represent the generated anchor link
label as sign

(
f(xl;w)

)
∈ {+1, 0}. How to determine its

value will be introduced later in Section 3.4. Based on it, the
loss function introduced in the generative component based
on the unlabeled anchor links can be denoted as

L(f,U ;w) =
∑
l∈U

(
w>xl − sign

(
f(xl;w)

))2

.

3.3.3 Query Component and Query Loss Function
Furthermore, besides the labeled links, a subset of the an-
chor links in U will be selected to query for the labels from
the oracle, which can be denoted as set Uq formally. The true
label of anchor link l ∈ Uq after query can be represented
as ỹl ∈ {+1, 0}. The remaining anchor links in set U can be
represented as U\Uq . Based on the loss functions introduced
before, depending on whether the labels of links are queried
or not, we can further specify the loss function for set U as

L(f,U ;w) = L(f,Uq;w) + L(f,U \ Uq;w)

=
∑
l∈Uq

(w>xl − ỹl)2 +
∑

l∈U\Uq

(
w>xl − sign

(
f(xl;w)

))2

.

Here, we need to add more remarks that notation ỹl denotes
the queried label of anchor link l ∈ Uq which will be a
known value, while the labels for the remaining anchor link
l ∈ U \ Uq will to be inferred in the model.

3.3.4 Cardinality Mathematical Constraint
As introduced before, the anchor links to be inferred be-
tween networks are subject to the one-to-one cardinality con-
straint. Such a constraint will control the maximum number
of anchor links incident to the user nodes in each networks.
Subject to the cardinality constraints, the prediction task of
anchor links between networks are no longer independent.
For instance, if anchor link (u(1), v(2)) is predicted to be
positive, then all the remaining anchor links incident to u(1)

and v(2) in the unlabeled set U will be negative by default.
Viewed in such a perspective, the cardinality constraint on
anchor links should be effectively incorporated in model
building, which will be modeled as the mathematical con-
straints on node degrees in this paper. To represent the user
node-anchor link relationships in networksG(1) andG(2) re-
spectively, we introduce the user node-anchor link incidence
matrices A(1) ∈ {0, 1}|U(1)|×|H|,A(2) ∈ {0, 1}|U(2)|×|H|

here. Entry A(1)(i, j) = 1 iff anchor link lj ∈ H is connected
with user node u(1)

i in G(1), and it is same for A(2).
According to the analysis provided before, we can repre-

sent the labels of links in H as vector y ∈ {+1, 0}|H|, where
entry y(i) represents the label of link li ∈ L. Depending
on which group li belongs to, its value has different rep-
resentations as introduced before y(i) = +1, if li ∈ L+;
y(i) = ỹli , if li ∈ Uq , and y(i) is unknown if li ∈ U \ Uq .
Furthermore, based on the anchor link label vector y, user
node-anchor link incidence matrices A(1) and A(2), we can
represent the user node degrees in networks G(1) and G(2)

as vectors d(1) ∈ N|H| and d(2) ∈ N|H| respectively.

d(1) = A(1)y, and d(2) = A(2)y.

Therefore, the one-to-one constraint on anchor links can
be denoted as the constraints on node degrees in G(1) and
G(2) as follows:

0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

3.4 Joint Optimization Objective Function
Based on the introduction in the previous subsection, by
combining the loss terms introduced by the labeled, queried
and remaining unlabeled anchor links together with the car-
dinality constraint, we can represent the joint optimization
objective function as

min
w,y,Uq

L(f,L+;w) + α · L(f,Uq;w)

+ β · L(f,U \ Uq;w) + γ · ‖w‖22
s.t. |Uq| ≤ b, and yl = ỹl,∀l ∈ Uq,

yl ∈ {+1, 0},∀l ∈ U \ Uq, and yl = +1,∀l ∈ L+,

0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

Here, we set the weight scalar α and β with the value 1,
because we assume that each link is equally important for
training, if no other external knowledge exists, regardless
of whether it belongs to Uq or U \ Uq . In this way, the new
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loss term of all the links in sets L+, Uq and U \ Uq can be
simplified as

L(f,L+;w) + α · L(f,Uq;w) + β · L(f,U \ Uq;w)

= L(f,H;w) = ‖Xw − y‖22 ,

where matrix X = [x>l1 ,x
>
l2
, · · · ,x>l|H| ]

T denotes the feature
matrix of all the links in set H.

Here, we can see the objective function involve multiple
variables, i.e., variable w, label y, and the query set Uq ,
and the objective is not jointly convex with regarding these
variables. What’s more, the inference of the label variable
y and the query set Uq are both combinatorial problems,
and obtaining their optimal solution will be NP-hard. In
this paper, we design an hierarchical alternative variable
updating process for solving the problem instead:

1) fix Uq , and update y and w,
(1-1) with fixed Uq , fix y, update w,
(1-2) with fixed Uq , fix w, update y,
2) fix y and w, and update Uq .

A remark to be added here: we can see that variable Uq is
different from the remaining two, which involves the label
query process with the oracle subject to the specified budget.
To differentiate these two iterations, we call the iterations
(1) and (2) as the external iteration, while call (1-1) and
(1-2) internal iteration. Next, we will illustrate the detailed
alternative learning algorithm as follows.
• External Iteration Step (1): Fix Uq , Update y, w.

� Internal Iteration Step (1-1): Fix Uq , y, Update w.
With y, Uq fixed, we can represent the objective function

involving variable w as

min
w

c

2
‖Xw − y‖22 +

1

2
‖w‖22 .

The objective function is a quadratic convex function,
and its optimal solution can be represented as

w = Hy = c(I + cX>X)−1X>y,

where H = c(I + cX>X)−1X> is a constant matrix. There-
fore, the weight vector w depends only on the y variable.

� Internal Iteration Step (1-2): Fix Uq , w, Update y.
With Uq , w fixed, together with the constraint, we know

that terms L(f,L+;w), L(f,Uq;w) and ‖w‖22 are all con-
stant. And the objective function will be

min
y
‖Xw − y‖22

s.t. yl ∈ {+1, 0},∀l ∈ U \ Uq,
yl = ỹl,∀l ∈ Uq and yl = +1,∀l ∈ L+,

0 ≤ A(1)y ≤ 1, and 0 ≤ A(2)y ≤ 1.

It is an integer programming problem, which has been
shown to be NP-hard and no efficiently algorithm exists
that lead to the optimal solution. In this paper, we will use
the greedy link selection algorithm proposed in [4] based
on values ŷ = Xw, which has been proven to achieve 1

2 -
approximation of the optimal solution. The time complexity
of this step is O(|L̃|), where L̃ = {l|l ∈ U \ Uq}.
• External Iteration Step (2): Fix w, y, Update Uq .

Selecting the optimal set Uq at one time involves the
search of all the potential b link instance combinations

from the unlabeled set U , whose search space is

(
|U|
b

)
,

and there is no known efficient approach for solving the
problem in polynomial time. Therefore, instead of selecting
them all at one time, we propose to choose several link
instances greedily in each iterations. Due to the one-to-one
constraint, the unlabeled anchor links no longer bears equal
information, and querying for labels of potential positive
anchor links will be more “informative” compared with neg-
ative anchor links. Among the unlabeled links, ActiveIter
selects a set of mis-classified false-negative anchor links
(but with a large positive score) as the potential candidates,
benefits introduced by whose label queries includes both
their own label corrections and other extra label gains of
their conflicting negative links at the same time. Formally,
among all the unlabeled links in U , we can represent the
set of links classified to be positive/negative instances in
the previous iteration step as U+ = {l|l ∈ U , yl = +1}
and U− = {l|l ∈ U , yl = 0}. Based on these two sets, the
group of potentially mis-classified false-negative anchor link
candidates as set

C = {l|l ∈ U−,∃l′, l′′ ∈ U+ that conflicts with l,

ŷl′ ∼ ŷl � ŷl′′ > 0},

where statement “l′/l′′ conflicts with l” denotes l′/l′′ and
l are incident to the same nodes respectively. Operator
ŷl′ ∼ ŷl represents ŷl′ is close to ŷl (whose difference
threshold is set as 0.05 in the experiments). All the links
in set C will be sorted according to value ŷl − ŷl′′ , and,
instead of adding one by one, the top k candidates will be
added to Uq in this iteration (Here, k denotes the query batch
size, which is assigned with value 5 in the experiments).
Because ActiveIter has to select the top k candidates from
all potential candidates, where the potential candidates we
defined as L̃− = {l|l ∈ U \ Uq, ỹl = 0}, the time complexity
of External Iteration Step (2) is O(|L̃−|).

3.5 Time Complexity Analysis

Here, we start to analyze the time complexity of ActiveIter
from a holistic perspective based on the analysis of each
step in section 3.4. As we set the query batch size as k
and the budget as b, the whole hierarchical alternative
variable updating process has to be executed b/k rounds.
The iteration step (1-1) is a matrix multiplication which has
he time complexity O(d ∗ |H|). The time complexity the
iteration step (1-2) is O(|L̃|). Besides, the time complexity
of the iteration step (2) is O(|L̃−|). We can find ActiveIter is
scalable, with near linear runtime in the network size |H|.

4 EXPERIMENTS

To demonstrate the effectiveness of ActiveIter and the meta
diagram based features, extensive experiments have been
done on real-world heterogeneous social networks. In the
following part, we will describe the dataset we use in
experiments at first. Then we will introduce the experi-
mental settings, including different comparison methods
and evaluation metrics used in the experiments. At last,
we will show the experimental results together with the
convergence analysis and parameter sensitivity analysis.
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TABLE 2
Properties of the Heterogeneous Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link friend/follow 164,920 76,972
write 9,490,707 48,756

4.1 Dataset Description
Our dataset used in experiments consists of two hetero-
geneous networks: Foursquare and Twitter. Both of them
are famous online social networks. The key statistical data
describing these two networks can be found in Table 2.
About the method and strategy of crawling this dataset, you
can get detailed information in [3], [9].
• Twitter: Twitter is a popular online social network that

provides a platform for users to share their life with
their online friends. Lots of the tweets written by users
in Twitter are location-related along with timestamp.
Our dataset includes 4, 893 users and 9, 490, 707 tweets.
257, 248 locations appears along with tweets. Besides,
the number of follow links between these users is
164, 920 in total.

• Foursquare: Foursquare is another famous social net-
work allowing users to interact with friends online
through multiple location-related services. Our dataset
has 5, 392 users in Foursquare and 76, 972 friendship
relationship among them. All these users have checked-
in at 38, 921 different locations via 48, 756 tips. There
are 3, 282 anchor links between Twitter and Foursquare
in the dataset.

4.2 Experimental Settings

4.2.1 Experimental Setup
In the experiments, we are able to acquire the set of anchor
links between Foursquare and Twitter. The size of the set
is 3, 282 which can be represented as L+. Based on the
problem definition introduced in Section 2.2, between the
Foursquare and Twitter network, all the remaining non-
existing anchor links can be represented as set H. A pro-
portion of non-anchor links are sampled randomly from
H \ L+ as negative set based on different negative-positive
(NP) ratios θ. NP-ratio θ in experiments ranges from 5
to 50 with the step length 5. The positive and negative
link sets are divided into 10 folds. Among them, 1 fold
will be used as the training set and the remaining 9 folds
as the test set. In order to simulate the problem setting
without enough labeled data, we further sample a small
proportion of labeled instances from the 1-fold training set
as the final training set. The sampling process is controlled
by parameter sample-ratio γ, which takes values in {10%,
20%, · · · , 100%}. Here, γ = 10% denotes only 10% of the 1-
fold training set (i.e., only 1% of the complete labeled data)
is sampled in the final training set; while γ = 100% means
all the instances in the 1-fold training set (i.e., 10% of the
labeled data) are used for training the model. In order to
prevent unexpected impacts caused by data partitioning,
we take 10 folds in turns to act as train set and the average

metrics of 10 experiments are taken as the final results. We
run the experiments on a Dell PowerEdge T630 Server with
2 20-core Intel CPUs and 256GB memory. The operating
system is Ubuntu 16.04.3, and all codes are implemented
in Python.

4.2.2 Comparison Methods
The methods used in experiments are listed as following,
we use them to verify 2 aspects of conclusions. One is the
effectiveness of meta diagram based feature vector, and the
other is the advantage of ActiveIter .
• ActiveIter : ActiveIter is the model proposed in this

paper which implements the learning process described
in Section 3.4. Through a limited budget, we aim at
selecting a good query set with the objective to improve
the performance of ActiveIter . Two different versions of
ActiveIter with budgets 50 and 100 are compared in the
experiments.

• ActiveIter-Rand : In this method, we select the query
set Uq in a random way in this method. The method is
used to verify the effectiveness of the query set selection
criteria used in ActiveIter .

• Iter-MPMD : Iter-MPMD extends the cardinality con-
strained link prediction model proposed in [4] by incor-
porating the meta diagrams for feature extraction from
aligned heterogeneous networks. ITER-MPMD is based
on a PU (positive unlabeled) learning setting, without
active query step.

• SVM-MP : SVM is a classic supervised learning model.
The feature vector used for building the SVM-MP
model are extracted merely based on the meta paths.

• SVM-MPMD : SVM-MPMD is identical to SVM-MP
excepts it is built based on the features extracted with
both meta paths and meta diagrams. Results compar-
ison between SVM-MPMD and SVM-MP can verify
the effectiveness of the meta diagram based features
proposed in this paper. Meanwhile, comparison of
SVM-MPMD and Iter-MPMD can also show that PU
learning setting adopted in Iter-MPMD is suitable for
the network alignment problem.

• DeepWalk : A random walk based network embedding
method [10], which is designed to deal with homoge-
neous network. We utilize it to learn the representation
of users merely based on the friendship information
and concatenate the representation of two users as the
feature of potential anchor links. Then the cardinality
constrained link prediction model [4] will be trained to
predict anchor links based on the feature.

• Metapath2vec : A meta-path based heterogeneous net-
work embedding method [11], but it can only handle
specific one meta-path. Similar to DeepWalk , we use
it to learn the embedding of users and predict anchor
links with the cardinality constrained link prediction
model [4]. We report the best result from all meta paths.

4.2.3 Evaluation Metrics
We choose to use conventional evaluation metrics to mea-
sure the performance of different methods in experiments.
The methods we test in experiments can all output link
prediction labels, and we will use F1, Recall and Precision as
evaluation metrics. We will not present the metric Accuracy
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TABLE 3
Performance comparison of different methods for Network Alignment. We use different NP-ratios with γ = 60%.

Negative Positive Ratio θ

metrics methods 5 10 15 20 25 30 35 40 45 50

F1

ActiveIter-100 0.631±0.01 0.575±0.01 0.524±0.01 0.484±0.02 0.455±0.02 0.436±0.02 0.413±0.01 0.402±0.02 0.384±0.01 0.363±0.01
ActiveIter-50 0.625±0.01 0.571±0.01 0.514±0.01 0.482±0.02 0.454±0.02 0.429±0.02 0.404±0.01 0.392±0.02 0.374±0.02 0.361±0.01

ActiveIter-Rand-50 0.616±0.01 0.553±0.01 0.501±0.01 0.463±0.01 0.437±0.01 0.413±0.01 0.392±0.02 0.381±0.02 0.368±0.02 0.352±0.01

Iter-MPMD 0.616±0.01 0.556±0.01 0.507±0.01 0.469±0.02 0.441±0.01 0.414±0.02 0.396±0.01 0.380±0.03 0.365±0.01 0.350±0.01

DeepWalk 0.265±0.03 0.128±0.02 0.095±0.02 0.070±0.02 0.059±0.01 0.046±0.01 0.038±0.01 0.030±0.01 0.022±0.01 0.011±0.01
Metapath2vec 0.327±0.02 0.161±0.01 0.109±0.01 0.084±0.01 0.073±0.01 0.058±0.01 0.049±0.01 0.041±0.01 0.027±0.01 0.014±0.00
SVM-MPMD 0.387±0.05 0.300±0.04 0.247±0.04 0.165±0.06 0.159±0.06 0.150±0.03 0.152±0.04 0.102±0.06 0.091±0.07 0.049±0.06

SVM-MP 0.476±0.11 0.093±0.08 0.055±0.05 0.004±0.01 0.002±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00

Pr
ec

is
io

n

ActiveIter-100 0.856±0.01 0.767±0.01 0.693±0.01 0.632±0.02 0.591±0.02 0.559±0.02 0.526±0.02 0.509±0.02 0.486±0.02 0.457±0.02
ActiveIter-50 0.848±0.01 0.762±0.01 0.676±0.02 0.626±0.02 0.587±0.02 0.551±0.02 0.515±0.02 0.496±0.03 0.473±0.02 0.454±0.02

ActiveIter-Rand-50 0.836±0.01 0.735±0.01 0.657±0.01 0.600±0.02 0.563±0.02 0.528±0.02 0.498±0.03 0.481±0.02 0.462±0.02 0.440±0.02

Iter-MPMD 0.835±0.01 0.738±0.01 0.665±0.01 0.609±0.02 0.569±0.02 0.530±0.02 0.504±0.02 0.4809±0.02 0.459±0.02 0.439±0.02

DeepWalk 0.317±0.03 0.134±0.02 0.097±0.02 0.071±0.02 0.060±0.01 0.047±0.01 0.039±0.01 0.031±0.01 0.027±0.01 0.022±0.01
Metapath2vec 0.373±0.03 0.173±0.01 0.119±0.01 0.087±0.01 0.077±0.01 0.067±0.01 0.055±0.01 0.046±0.01 0.031±0.01 0.027±0.00
SVM-MPMD 0.743±0.06 0.703±0.04 0.652±0.06 0.587±0.20 0.585±0.09 0.520±0.05 0.519±0.06 0.487±0.25 0.331±0.27 0.311±0.31

SVM-MP 0.571±0.02 0.338±0.28 0.323±0.27 0.057±0.17 0.018±0.05 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00

R
ec

al
l

ActiveIter-100 0.499±0.01 0.460±0.01 0.422±0.01 0.392±0.01 0.371±0.01 0.357±0.01 0.339±0.01 0.332±0.01 0.318±0.01 0.301±0.01
ActiveIter-50 0.495±0.01 0.457±0.01 0.414±0.01 0.392±0.01 0.371±0.01 0.352±0.02 0.333±0.01 0.324±0.01 0.310±0.01 0.300±0.01

ActiveIter-Rand-50 0.488±0.01 0.443±0.01 0.404±0.01 0.376±0.01 0.357±0.01 0.340±0.01 0.323±0.01 0.315±0.01 0.305±0.01 0.293±0.01

Iter-MPMD 0.488±0.01 0.446±0.01 0.410±0.01 0.381±0.02 0.360±0.01 0.340±0.01 0.327±0.01 0.314±0.01 0.302±0.01 0.290±0.01

DeepWalk 0.227±0.03 0.123±0.01 0.083±0.04 0.069±0.01 0.059±0.01 0.046±0.01 0.038±0.01 0.030±0.01 0.019±0.03 0.007±0.00
Metapath2vec 0.291±0.01 0.151±0.01 0.101±0.05 0.081±0.01 0.070±0.01 0.051±0.02 0.044±0.01 0.037±0.01 0.025±0.01 0.009±0.00
SVM-MPMD 0.271±0.07 0.194±0.04 0.155±0.03 0.097±0.03 0.094±0.03 0.086±0.02 0.088±0.02 0.059±0.04 0.053±0.04 0.027±0.03

SVM-MP 0.439±0.14 0.055±0.05 0.031±0.03 0.002±0.00 0.001±0.01 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00
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Fig. 3. Convergence analysis when sample-ratio=100%.
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Fig. 4. Scalability analysis when sample-ratio=100%.
in the tables, because in such a class-imbalance setting of
alignment tasks, the value of Accuracy is not so critical
in evaluating the comparison methods. It should be noted
that we need to query some labels in ActiveIter-Rand and
ActiveIter . In other words, for the active-learning based
methods, labels of these queried links are known already.
In evaluation, we will remove these queried links from
test set to maintain evaluation fairness between different
comparison methods.

4.3 Convergence and Scalability Analysis
In building the model ActiveIter , we propose to use the Ex-
ternal Iteration Step (1) in the Section 3.4 essentially to learn

both the model variable vector w and predict the anchor link
label vector y. In order to to show such an iteration step can
convergence, in Figure 3, we show the label vector changes
in each iteration. Here, the x axis denotes the iterations, and
the y axis denotes the changes of vector y in sequential
iterations i and i− 1, i.e., ∆y =

∥∥yi − yi−1
∥∥

1
. According to

Figure 3, we observe that the label vector of ActiveIter in the
external iteration step can converge in less than 5 iterations
for different NP-ratios.
Figure 4 shows the near-linear scaling of ActiveIter’s run-
ning time in the data size. Here the X axis is the NP-ratio θ,
where the value of θ can represent the number of total links
as we set before. The slopes indicate linear growth which
shows the scalability of ActiveIter .

4.4 Experimental Results with Analysis
The experimental results acquired by different comparison
methods are shown in Table 3 and Table 4 mainly. In Table 3,
Sample-ratio γ is fixed as 60%, and NP-ratio θ changes
within {5, 10, · · · , 50}. The experimental results of these
comparison methods are evaluated by the F1, Recall and
Precision metrics respectively. Here, ActiveIter-50 denotes
ActiveIter with 50 query budget, and ActiveIter-100 has
a query budget of value 100. At first, we focus on the
comparison between SVM-MP and SVM-MPMD . We can
find SVM-MPMD has a distinct advantage over SVM-MP
with θ ∈ {5, 10, · · · , 50}. Especially when θ is over 25, the
Recall of SVM-MP goes down to 0, and it denotes SVM-MP
becomes ineffective in identifying the positive anchor links.
However, SVM-MPMD can still work in such a class imbal-
ance scenario. There is only one exception in the table: when
θ = 5, the recall of SVM-MP is better than SVM-MPMD . We
believe it is caused by very limited positive links and then
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TABLE 4
Performance comparison of different methods for Network Alignment. We use different sample-ratios with θ = 50.

Sample Ratio γ

metrics methods 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

F1

ActiveIter-100 0.235±0.00 0.265±0.02 0.291±0.02 0.309±0.01 0.333±0.01 0.363±0.01 0.369±0.02 0.397±0.01 0.404±0.00 0.422±0.01
ActiveIter-50 0.230±0.01 0.247±0.01 0.289±0.02 0.300±0.01 0.323±0.02 0.361±0.01 0.362±0.02 0.396±0.01 0.399±0.00 0.410±0.01

ActiveIter-Rand-50 0.219±0.01 0.234±0.01 0.284±0.02 0.289±0.01 0.316±0.01 0.352±0.01 0.360±0.01 0.383±0.01 0.391±0.00 0.402±0.01

Iter-MPMD 0.217±0.01 0.233±0.01 0.280±0.02 0.293±0.01 0.316±0.02 0.350±0.01 0.361±0.02 0.385±0.01 0.387±0.00 0.400±0.01

DeepWalk 0.005±0.01 0.006±0.00 0.006±0.00 0.010±0.01 0.010±0.00 0.011±0.01 0.013±0.00 0.027±0.00 0.045±0.01 0.072±0.01
Metapath2vec 0.001±0.00 0.010±0.00 0.012±0.00 0.017±0.00 0.014±0.00 0.014±0.00 0.023±0.00 0.047±0.01 0.071±0.01 0.123±0.01
SVM-MPMD 0.005±0.01 0.006±0.01 0.065±0.04 0.043±0.05 0.042±0.06 0.049±0.06 0.082±0.06 0.09±0.06 0.092±0.07 0.131±0.06

SVM-MP 0.005±0.01 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00

Pr
ec

is
io

n

ActiveIter-100 0.318±0.01 0.352±0.02 0.379±0.02 0.396±0.01 0.424±0.02 0.457±0.02 0.460±0.03 0.491±0.01 0.499±0.01 0.518±0.02
ActiveIter-50 0.310±0.01 0.327±0.02 0.375±0.02 0.384±0.015 0.410±0.02 0.45±0.02 0.450±0.03 0.489±0.02 0.492±0.01 0.503±0.02

ActiveIter-Rand-50 0.295±0.01 0.310±0.01 0.369±0.02 0.370±0.01 0.400±0.02 0.440±0.02 0.447±0.02 0.471±0.02 0.480±0.01 0.493±0.01

Iter-MPMD 0.292±0.01 0.308±0.01 0.364±0.02 0.374±0.01 0.399±0.02 0.439±0.02 0.448±0.02 0.474±0.01 0.475±0.01 0.489±0.01

DeepWalk 0.007±0.00 0.009±0.00 0.009±0.00 0.015±0.00 0.019±0.01 0.022±0.01 0.029±0.00 0.048±0.01 0.067±0.01 0.099±0.01
Metapath2vec 0.007±0.01 0.013±0.00 0.019±0.00 0.024±0.00 0.029±0.00 0.027±0.00 0.037±0.00 0.063±0.01 0.091±0.01 0.135±0.02
SVM-MPMD 0.050±0.15 0.078±0.19 0.395±0.27 0.236±0.29 0.180±0.27 0.311±0.31 0.343±0.28 0.424±0.27 0.361±0.29 0.449±0.22

SVM-MP 0.044±0.13 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00

R
ec

al
l

ActiveIter-100 0.186±0.01 0.213±0.01 0.236±0.01 0.253±0.01 0.274±0.01 0.301±0.01 0.308±0.02 0.334±0.01 0.339±0.00 0.356±0.01
ActiveIter-50 0.183±0.01 0.198±0.01 0.235±0.01 0.246±0.01 0.267±0.01 0.300±0.01 0.303±0.02 0.333±0.01 0.336±0.01 0.347±0.01

ActiveIter-Rand-50 0.174±0.01 0.188±0.01 0.231±0.01 0.237±0.01 0.261±0.01 0.293±0.01 0.302±0.01 0.322±0.01 0.330±0.00 0.340±0.01

Iter-MPMD 0.173±0.01 0.188±0.01 0.228±0.01 0.241±0.01 0.261±0.01 0.290±0.01 0.302±0.01 0.324±0.01 0.327±0.00 0.338±0.00

DeepWalk 0.004±0.01 0.004±0.00 0.004±0.00 0.008±0.03 0.007±0.00 0.007±0.00 0.008±0.01 0.019±0.01 0.034±0.00 0.057±0.01
Metapath2vec 0.001±0.00 0.008±0.00 0.009±0.00 0.013±0.00 0.009±0.00 0.009±0.00 0.017±0.00 0.038±0.00 0.058±0.01 0.113±0.01
SVM-MPMD 0.002±0.01 0.003±0.01 0.036±0.02 0.024±0.03 0.024±0.03 0.027±0.03 0.047±0.03 0.056±0.03 0.053±0.04 0.077±0.04

SVM-MP 0.003±0.01 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00
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Fig. 5. Performance Analysis under different budgets when θ = 50 and γ = 60% for ActiveIter and ActiveIter-Rand .

conduct the supplementary experiment which samples the
dataset another time and verifies the recall in θ = 5 is just
an accident finally. Therefore, we can verify the effective-
ness of the feature vector based on meta diagrams by the
comparison of this set of experiments. From the comparison
among Iter-MPMD , DeepWalk and Metapath2vec , we can
also find that the features based on meta diagrams work
better than these network embedding methods. The reason
lies in that these two network embedding methods learn
the representation of users in the view of the single network
but ignore connections across two networks which are non-
trivial for the alignment tasks. Besides, the comparison
between SVM-MPMD and Iter-MPMD demonstrates that
Iter-MPMD based on a PU learning setting provides a much
better modeling for network alignment.

Meanwhile, by comparing Iter-MPMD with ActiveIter-
Rand-50 , we can discover the metrics obtained by
ActiveIter-Rand-50 can even be worse than Iter-MPMD in
some cases. In other words, querying labels in a random
way will not contribute to the improvement of the predic-
tion result. From the results, we are also able to observe that
ActiveIter-50 outperforms ActiveIter-Rand-50 consistently
for θ ∈ {5, 10, · · · , 50}. In addition, the comparison between
ActiveIter-50 and ActiveIter-100 shows the budget value

may have an impact on the performance of ActiveIter ,
whose sensitivity analysis is available in Section 4.5.

In Table 4, we fix θ as 50 and change the sample-ratio
γ with values in {10%, 20%, · · · , 100%}. From Table 4,
we can confirm conclusions verified from Table 3 are still
valid firstly. Furthermore, we can make comparison be-
tween ActiveIter-100 with certain γ and Iter-MPMD with
γ + 10%, when θ = 50, the size of training set will
increase by 1, 670, if γ increases by 10%. Between these
two methods, besides the γ percentage of training instances
shared by both methods, Iter-MPMD uses additional 1, 670
training instances, while ActiveIter-100 merely queries for
additional 100 instances. According to the results, in most
of the cases, ActiveIter-100 with far less training data can
still outperform Iter-MPMD with great advantages. For
example, when γ = 80%, ActiveIter-100 has metrics that
F1 = 0.3978, Precision = 0.4913 and Recall = 0.3343.
We use Iter-MPMD which γ = 90% as a comparison. F1,
Precision and Recall achieved by Iter-MPMD are 0.3875,
0.4755 and 0.3270 respectively. In other words, ActiveIter
can get better performance with around 5% cost in labeling
links compared with Iter-MPMD .
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4.5 Parameter Analysis
The effects of the parameter budget b on the performance
of ActiveIter will be analyzed in this part. From Figure 5,
we can observe that ActiveIter can achieve better prediction
results consistently along with querying critical labels con-
tinuously, but ActiveIter-Rand can not improve prediction
output with random labels. This result shows that when
b rises, ActiveIter is accompanied by better results in all
metrics including F1, Precision. Recall and Accuracy. Mean-
while, this performance improvement is continuous and
significant because when the b changes within {10, 25, 50, 75,
100}, the improvement of performance does not slow down.
After b exceeds 50, three key metrics including F1, Precision
and Accuracy have been higher than Iter-MPMD which has
1, 670 more labeled links in the training set. According to
the analysis results, with far less (less than 100 additional)
training instances, method ActiveIter proposed in this paper
based on active learning can achieve comparable and even
better results than the non-active method Iter-MPMD with
1,670 extra training instances.

5 RELATED WORK

Network alignment problem is an important research prob-
lem, which has been studied in various areas, e.g., protein-
protein-interaction network alignment in bioinformatics [5],
[12], [13], chemical compound matching in chemistry [14],
data schemas matching data warehouse [15], ontology align-
ment web semantics [16], graph matching in combinatorial
mathematics [17], and figure matching and merging in com-
puter vision [18], [19]. Network alignment is an important
problem for bioinformatics. By studying the cross-species
variations of biological networks, network alignment prob-
lem can be applied to predict conserved functional modules
[20] and infer the functions of proteins [21]. Graemlin [2]
conducts pairwise network alignment by maximizing an
objective function based on a set of learned parameters.
Some works have been done on aligning multiple network
in bioinformatics. IsoRank proposed in [6] can align multi-
ple networks greedily based on the pairwise node similarity
scores calculated with spectral graph theory. IsoRankN [13]
further extends IsoRank by exploiting a spectral clustering
scheme. Manifold Alignment on Hypergraph(MAH) is also
closely related to network alignment. [22] conducts mani-
fold alignment based on social hypergraphs and partial user
correspondences for the social network alignment problem.
Network embedding method [23] preserve the proximity of
users in the embedded space to align networks.

Similarity measure based on heterogeneous networks
has been widely studied. Sun introduces the concept of meta
path-based similarity in PathSim [24], where a meta path is a
path consisting of a sequence of relations. However, the
meta path suffers from two disadvantages. On one hand,
meta path cannot describe rich semantics effectively. On
the other hand, once numerious meta paths are defined,
it’s challenging to assemble them. Some methods to re-
solve these deficiencies are proposed later. Meta structure
[8] applys meta-graph to similarity measure problem, but
entities are constrained to be of the same type. Zhao [7]
proposes the concept of meta graph and extends the idea
to recommendation problems which require that entities

belong to different types. However, meta structure and meta
graph are proposed for single non-attribute networks. In our
inter-network meta diagram definition, not only regular node
types but also attribute types are involved, and it can be
applied to the similarity measure across networks.

For online social networks, network alignment provides
an effective way for information fusion across multiple
information sources [25], [26]. For the huge size of social
networks, [27] addressed the computational issue from the
view of optimization. In the social network alignment model
building, the anchor links are very expensive to label man-
ually, and achieving a large-sized anchor link training set
can be extremely challenging. In the case when no training
data is available, via inferring the potential anchor user
mappings across networks, Zhang et al. have introduced
an unsupervised network alignment models for multiple
social networks in [1]. Some unsupervised network struc-
ture modeling methods proposed in [23], [28] can be used in
network alignment task. However, pre-labeled anchor links
can provide necessary information for understanding the
patterns of aligned user pairs in their information distribu-
tion, which lead to the better performance than the unsu-
pervised alignment models. Therefore, in [4], [29], Zhang et
al. propose to study the network alignment problem based
on the PU learning setting. More research work focusing on
social network alignment and user identity linkage can be
referred from [30], [31]

Active learning is an effective method for network align-
ment in the face of lacking labeled links which has been
previous studied by [32], [33]. The query strategies proposed
by Cortés and Serratosa [32] return a probability matrix for
different alignment choices which makes the quantification
of network alignment straightforward. However, this kind
of strategies totally ignore the one-to-one cardinality constraint
existing in online social networks. Therefore, we provide an
innovative query strategy considering one-to-one cardinality
constraint in ActiveIter . Malmi [33] proposes two relative-
query strategies TOPMATCHING and GIBBSMATCHING in-
stead of focusing on absolute-query. However, it may not
be less challenging for experts to make comparative judge-
ments in online social networks, because the quantity of
cantidates corresponding to one node will be huge.

Across the aligned networks, various application prob-
lems have been studied. Cross-site heterogeneous link pre-
diction problems are studied by Zhang et al. [34] by trans-
ferring links across partially aligned networks. Besides link
prediction problems, Jin and Zhang et al. proposes to par-
tition multiple large-scale social networks simultaneously
in [35]. The problem of information diffusion across par-
tially aligned networks is studied by Zhan et al. in [36],
where the traditional LT diffusion model is extended to
the multiple heterogeneous information setting. Shi et al.
give a comprehensive survey about the existing works on
heterogeneous information networks in [37], which includes
a section talking about network information fusion works
and related application problems in detail.

6 CONCLUSION

In this paper, we study the ANNA problem and propose an
active learning model ActiveIter based on meta diagrams to
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solve this problem. Meta diagrams can be extracted from
the network to constitute heterogeneous features. In our
experiments, we verify the effectiveness of meta diagram
based feature vectors at first. In the active learning model
ActiveIter , we propose an innovative query strategy in
the selection process to in order to query for the optimal
unlabeled links. Extensive experiments conducted on two
real-world networks Foursquare and Twitter demonstrate
that ActiveIter has very outstanding performance compared
with the state-of-the-art baseline methods. ActiveIter only
needs a small-size training set to build up initially and
can outperform the other non-active models with much less
training instances.
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