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Abstract—For various optimization methods, gradient descent-
based algorithms can achieve outstanding performance and have
been widely used in various tasks. Among those commonly used
algorithms, ADAM owns many advantages such as fast conver-
gence with both the momentum term and the adaptive learning
rate. However, since the loss functions of most deep neural
networks are non-convex, ADAM also shares the drawback of
getting stuck in local optima easily. To resolve such a problem,
the idea of combining genetic algorithm with base learners is
introduced to rediscover the best solutions. Nonetheless, from our
analysis, the idea of combining genetic algorithm with a batch
of base learners still has its shortcomings. The effectiveness of
genetic algorithm can hardly be guaranteed if the unit models
converge to close or the same solutions. To resolve this problem
and further maximize the advantages of genetic algorithm with
base learners, we propose to implement the boosting strategy
for input model training, which can subsequently improve the
effectiveness of genetic algorithm. In this paper, we introduce
a novel optimization algorithm, namely Boosting based Genetic
ADAM (BGADAM). With both theoretic analysis and empirical
experiments, we will show that adding the boosting strategy into
the BGADAM model can help models jump out the local optima
and converge to better solutions.

I. INTRODUCTION

Deep learning models have achieved impressive success in
many areas, which include the computer vision [18], natural
language processing [11], [31] and recently appeared graph
neural networks [9], [27]. By owning a large number of vari-
ables and non-linear functions (e.g., the Relu function [22]),
deep learning models can fit extremely complex data and learn
the hidden representations of them. To let the deep learning
models achieve outstanding performance, one of the most
important procedures is training the models with appropriate
optimization algorithms. During the training process of deep
learning models, the essence is to search for the global optima
of the loss functions. This process can be represented by

min
w∈W

f(X,y; w) (1)

Here, f(·, ·; w) denotes the loss function with variables w ∈
W , where W is the solution space of variables; X and y
denote the features and labels of the training data respec-
tively. Up to now, the most commonly used optimization
algorithms are based on the gradient descent, for example the
stochastic gradient descent (SGD), SGD with momentum [24],
AdaGrad [4], RMSPROP [30] and ADAM [15]. Among these
algorithms, ADAM is the most widely used one and has
been proven to be powerful in various tasks thanks to its

fast convergence rate. However, ADAM still has the common
drawback of easily converging to the local optima and getting
stuck into it, especially when dealing with the non-convex
problems [7]. To solve the problem of converging to the local
optima, the idea of integrating genetic algorithm and multiple
learners have been proposed such as GADAM [37], which can
combine the advantages of both the genetic algorithm and
the ADAM. During the training process, initially multiple
input models are trained simultaneously. From these input
models, a batch of (parent) model pairs are selected, and
genetic algorithm is implemented to the variables of these
parent models after they converge to the local optima. Apply-
ing the genetic algorithm can help the trained parent models
“jump out” of local optimal points when dealing with the non-
convex problem. The “jump out” operation is implemented
through reorganizing the variables of the parent models. Even
though genetic algorithm with multiple learners has the po-
tential capability of approaching more optimized solutions,
the actual effect still can not be guaranteed. If most of the
input models, or parent models converge to the close or even
the same local optima, the genetic algorithm operation might
become meaningless since the output models of the variables
reorganizing still locate at the local optima. We denote this
phenomenon of failing to jump out of local optima as the
“local sticking”. To avoid the “local sticking” problems and
increase the capability of converging to better solutions, one
concrete idea is to let the parent models converge to divergent
local optima. In this way, the genetic algorithm is more likely
to generate models with variables at different locations and
subsequently increase the possibility of converging to better
solutions and achieving better performance.

In this paper, we will propose a new optimization algorithm,
namely Boosting based Genetic ADAM (BGADAM) to solve
the “local sticking” problem mentioned above and further
achieve better performance compared with GADAM algorithm.
With the support of the boosting strategy, BGADAM can
improve the performance of the optimization by differentiating
the parent models, and meanwhile guarantee the convergence
of the algorithm theoretically. Boosting strategy [6], [38]
utilizes the interactions among base learners to accomplish
a more effective model training. The interaction is achieved
by redistributing the dataset to modify the training set for
each input model. In each training iteration, the boosting
strategy samples training data from the training dataset with
replacement subject to different weights. After the training



Table I
NOTATIONS AND TERMINOLOGIES DEFINITIONS

Notation Definition
m Number of samples in training set
Dj Training set for jth model
z Weight vector of training samples
M Input model
M̄ Trained input model
w̄i Variables of model M̄i

C Child model
wi Variables of child model Ci

N New generation model
ε Training error rate
g Number of input models in each generation
K Number of generations
G(k) kth generation

process of one input model, the weights of all the data samples
will be updated according to the classification results of this
model. Based on the updated weights, the training set will be
sampled under the updated distribution, and newly sampled
training data will be assigned to the next input model. Mean-
while, this newly sampled dataset inclines to contain more
data misclassified by the previous input model. In this way,
by proposing the boosting strategy, different parent models
will be trained with different training examples. In other
words, the parent models trained by different training set will
subsequently converge to divergent local optima with a higher
probability. Therefore, BGADAM can effectively diversify the
learned parent models, which can further improve the learning
performance.

The following part of the paper is organized as follows.
In Section II, we will talk about some related works. In
Section III, we will cover more details about our proposed
BGADAM algorithm, whose effectiveness will be analyzed in
Section IV, and performance will be tested with extensive
experiments in Section V. Finally, we will conclude this paper
in Section VI.

II. RELATED WORKS

Deep Learning Models: Deep learning models have
achieved state-of-the-art results in recent years, whose rep-
resentative examples include feed-forward deep neural net-
works (DNN) [25], [33], convolutional neural networks
(CNN) [18] [19], and recurrent neural networks (RNN) [11],
[31]. DNN models mainly consist of several layers of the
linear transforms and the non-linear activation functions. The
combination of these linear and non-linear transforms between
input features and outputs enables the DNN to fit more
complex patterns hidden in the training data. Inspired by
the great success of DNN models, more attention had been
focused on transplanting the deep model ideas onto other types
of data such as the image type and the sequential type data.
To deal with the image data, CNN has been proposed and
already shown outstanding performance on various computer
vision tasks; for the sequential data, the RNN model came
up. RNN [2], [20] models are connectionist models with the
ability to pass information across sequence elements while
conducting sequential data one element at a time. Besides,

there also exist many other types of deep learning models
to tackle different types of data, e.g., the graph neural net-
works [9], [10], [13], [27], graph convolutional networks [16]
and graph attention networks [32] to deal with graph type
data; the Generative Adversarial Networks (GAN) [8] to train
discriminative models and generative models, etc.
Genetic Algorithm: Genetic algorithm [1], [12], [14], [21],
[34] is a family of computational algorithms inspired by
creature evolution in the natural environment. It encodes a
potential solution to a specific problem on chromosome-
like data structures and applies recombination (reorganization)
operators to these structures [35]. This process is also called
crossover [29]. Besides, genetic algorithm also adds random
mutations on the solutions to mimic the natural world’s real
gene mutation process. In this way, for some models stuck in
local optimal points, genetic algorithm can help them jump out
by switching specific variables. During the generating process,
the above crossover and mutation operations are implemented
to a bunch of models, which are called the population set.
After that, the models with the worst performance (the fitness
score) will be eliminated. Finally, individuals with relatively
better performance are retained.
Optimization Algorithms: The main purpose of the opti-
mization algorithms is to closely approach the best solution
of the loss functions during the backpropagation. So far
most commonly used optimizers are based on the gradient
descent [24], such as the stochastic gradient descent (SGD),
the AdaGrad [4], the RMSPROP [30] and the ADAM [15].
SGD performs a variable update for each training example
X[i, :] and label y[i], it can be expressed as:

w = w − η · ∇wf(X[i, :],y[i]) (2)

where η is the learning rate and ∇w is the derivative of the
loss function regarding variable w. The advantages of SGD
include fast speed and getting rid of redundancy [24]. SGD
with momentum [23], [28] is a method that helps accelerate
SGD in the relevant directions. SGD with momentum updates
variables with the following equations:

vt = γ · vt−1 + η · ∇wf(w)

wt = wt − vt
(3)

where γ is the momentum term weight. The momentum term
accelerates variable updates for dimensions whose gradients
are in the same direction as historical gradients and deceler-
ates updates for dimensions whose gradients are the reverse.
Therefore its convergence process will be faster. However,
the unified learning rate for all variables can lead to some
problems. If variables have different scales, we should not
update them with the same rate. Some variant algorithms have
been proposed to solve this problem, such as the AdaGrad
and the RMSPROP. AdaGrad [4] adapts the learning rate to
the parameters, performing larger updates for infrequent and
smaller updates for frequent parameters. RMSPROP [30] is
a refined version of the AdaGrad that applies the moving
average of the historical gradients to adapt the learning rates.
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Figure 1. BGADAM structure

ADAM [15] is proposed based on the SGD and the mo-
mentum, which computes individual adaptive learning rates
for different variables. Similar to the SGD with momentum
and the RMSPROP, ADAM records the first-order momentum
mt and the second-order momentum vt of the gradients and
computes the bias-corrected version of them respectively.
Ensemble Learning: Ensemble learning [3], [36], [38] tries to
train multiple learners to solve the same problem. In contrast
to ordinary learning approaches that attempt to construct one
model from the training data, ensemble methods try to con-
struct a set of learners and combine them. The commonly used
ensemble methods include boosting and bagging. Boosting [6],
[38] generally creates a batch of weak learners, and each
learner is trained based on the sampled training data under
the distribution decided by the previous learner. In other
words, each learner can focus more on the data samples
being misclassified by the previous learner. Bagging adopts the
bootstrap distribution for generating different base learners. It
applies bootstrap sampling [5] to obtain the data subsets for
training the base learners.

III. BGADAM LEARNING ARCHITECTURE

In this section, we will introduce more details about the
BGADAM optimizer. The architecture of BGADAM is il-
lustrated in Figure 1. In the architecture, the green frame
denotes the boosting strategy based ADAM, whose detailed
structure is provided in Figure 2. Next, we will provide more
detailed descriptions of both the architecture and the involved
learning components. The notations and terminologies we have
employed in this paper are presented in Table I.

BGADAM adopts the boosting strategy to increase the
diversity of the input models, which can further resolve the
“local sticking” problem of the parent models. The learning
process of BGADAM involves multiple generations, which can
be denoted as G(1), G(2), · · · , G(K) respectively (K is the
total generation count). In each generation, g input models will
be trained along with the boosting based ADAM at first; then
a batch of trained input models will be selected to compose
the parent model pairs; after that, the child models will evolve
according to the genetic algorithm; finally, among both the

input models and the generated child models, the same number
(e.g., g) of new generation models will be selected as the
output models of the current generation and as the input
models of the next generation. After a predefined number of
iterations (or some converging criteria has been satisfied), the
training will stop, and the best new-generation models will
become the output model. We will refer to each procedure in
the following parts.

A. Training Input Models with Boosting Strategy

In each generation G(k), k ∈ {1, 2, . . . ,K}, g input models
{M1,M2, . . . ,Mg} are trained with boosting based ADAM.
More detailed information about the boosting based ADAM
training will be covered in Section III-E. The essence of
boosting strategy is to train multiple models with collaborating
policy [38], then combine these models to induce the final
results. For each model, the collaborating is achieved by
sampling different sub training sets according to the pre-
vious model’s performance. Specifically, during the training
process of g input models, the same size g training sets
{D1,D2, . . . ,Dg} will be generated. For each training set
Dj , its data samples are sampled from the entire training
set, under the distribution determined by the performance of
model Mj−1. For our classification task, the data samples
having been misclassified by Mj−1 will be assigned higher
probabilities to be sampled in Dj . In this way, boosting
strategy allocates each input model with different training
data. Since the different training sets will allow the input
model variables to be updated by ADAM differently, these
g input models are more likely to converge to different
local optimal points. Such a characteristic gives the following
genetic algorithm more advantages, and we will discuss this
in the later parts. Moreover, boosting strategy not only allows
each input model to learn information hidden in data, but
also refers to previously trained models. We also call this
process the interaction among the input models. After the
training process of g input models, {M̄1, M̄2, . . . , M̄g} refers
to the trained input models, and then parent model pairs
{(M̄i1 , M̄j1), . . . , (M̄ig , M̄jg )}, i, j ∈ {1, 2, . . . , g} will be
chosen from them based on special mechanism. Next, the



ഥ𝑀1
Adam

ഥ𝑀2

Boosting

Adam

Boosting

Boosting

Adam

ഥ𝑀𝑔

Training sets 𝑫 Trained input models

𝑀1

𝑀2

𝑀𝑔

Input models

𝐷1

𝐷2

𝐷𝑔

Figure 2. Boosting based ADAM

child models will evolve from them by the genetic algorithm,
which essentially helps the parent models jump out of the
local minimum and discover global optima to achieve better
learning performance.

B. Parent Model Selection and Fitness Evaluation

Similar to the evolutionary laws in the natural world, where
individuals with better performance own higher possibilities
to become the parents, our proposed BGADAM also inclines
to choose input models with better performance to participate
in the evolving process. Before the evolving operations, from
the input models trained by boosting based ADAM, a batch
of parent model pairs will be selected according to the fitness
evaluation. The fitness evaluation aims to evaluate each trained
input model by computing their fitness scores for the learning
setting, and a better fitness score means better performance of
the target model. Correspondingly, input models with better
fitness scores would be more likely to be selected as the parent
models lately. Thus, the function of fitness evaluation is akin
to evolutionary laws.

In the kth generation G(k), for each trained input model
M̄i, we calculate its loss on validation set V (sampled from
the training set) as the fitness score, which can be denoted as
follows:

l[i] =
∑

(X[j,:],y[j])∈V

l(X[j, :],y[j]; wi) (4)

where l(·, ·; ) is the cross-entropy loss function, wi denotes
the variables of model M̄i, and vector l ∈ Rg contains the
computed fitness scores of all these g unit models in the
current generation. By calculating the loss of input models
on the validation set, we can judge these input models: the
less the loss is, the better performance model will have in
general. However, directly using the loss terms for parent
model selection may not work well because the range of l[i]
might vary in a large scale. So for each l[i], we utilize the
normalized l̂[i] = l[i]−min(l)

max(l)−min(l) to calculate the selecting
probability for input model M̄i to become the parent model
as follows:

p[i] =
exp(−l̂[i])∑g
j=1 exp(−l̂[j])

(5)

where P ∈ Rg . According to the probability vector p, g
different model pairs {(M̄i1 , M̄j1), . . . , (M̄ig , M̄jg )} will be
sampled with replacement as parent models.

C. Crossover and Mutation

The genetic laws of individuals’ genes are common in
the natural world to obtain better offspring. Inspired by the
recombination and mutation rules of genes in genetic laws, the
genetic algorithm also carries out similar operations, named
crossover and mutation separately. The genetic algorithm in-
cludes crossover and mutation operations for creating child
models generation, where the model variables are treated as
the chromosome of gene, respectively.
• Crossover: Given a parent model pair (M̄in , M̄jn) with

respective variable vectors w̄in and w̄jn , crossover gen-
erates their child model with variable vector wn, whose
entry wn[h] can be represented as

wn[h] = 1(rand ≤ threshold) · w̄in [h]

+ 1(rand > threshold) · w̄jn [h]
(6)

In the Equation 6, 1(·) is the indicator function, rand
is a random number uniformly distributed in [0, 1],
threshold = p[in]

p[in]+p[jn]
and w̄in [h], w̄jn [h] denotes

the hth variable of the parent models M̄in and M̄jn

respectively. By applying the evolving rule in Equation 6
to each parent model pairs, the model with relatively
better performance would retain more its own variables.

• Mutation: Similar to crossover, the mutation can be
expressed as

wn[h] = 1(rand ≤ pm) · N (0, 0.01)

+ 1(rand > pm) ·wn[h]
(7)

where pm = p · (1−p[in]−p[jn]) and p is a pre-defined
value (e.g., p = 0.01), N (0, 0.01) is a random number
sampled from the normal distribution with 0 mean and
0.01 variance. Equation 7 can make sure the child models
of parents with higher p values to be less likely to mutate.
In other words, the mutaton mechanism in Equation 7
inclines to preserve the variables inherited from parents
that having better performance.

Formally, via crossover and mutation, we can represent the
generated g child models as {C1, C2, · · · , Cg}, which will be
further trained via the boosting based ADAM. Those trained
child models can be denoted as {C̄1, C̄2, · · · , C̄g} respectively.

D. New Generation Selection

The selection of the new generation of models also follows
the evolutionary law: the best and strongest individuals will
survive. The new generation models are selected among both
the trained child models and input models. In this way, it is cer-
tain that the selected new generation of models will not deteri-
orate compared with the input models. This idea also conforms
to the rule of survival of the fittest in natural selection. For each
model in {M̄1, M̄2, . . . , M̄g}

⋃
{C̄1, C̄2, . . . , C̄g}, its loss on

the validation set will be recorded. Finally, we will select the



Algorithm 1: BGADAM

Input: Input models {M1,M2, . . . ,Mg}; training
feature X; training label y

Output: Final model
for i = 1, 2, . . . ,K do

z = [ 1
m ,

1
m , . . . ,

1
m ] and D1 = (X,y);

l = [] ; /* To record loss. */
for j = 1, 2, . . . , g do

Train Mj as M̄j using Dj dataset;
l[j] = The loss of M̄j on V;
Update z by Equation (9) and Equation (10);
Produce Dj+1 by sampling subject to z;
Compute p[j] according to Equation (5);

end
for h = 1, 2, . . . , g do

Select M̄ik and M̄jk according to p;
Generate Ck by Equations (6) and (7);
Train Ch as C̄h using Dh;
l[h] = The loss of C̄h on V;

end
for l = 1, 2, . . . , g do

Select model with smallest value in l as Nl;
Delete the smallest value in l;

end
end
return N1 model

top g models with the smallest losses as the new generation
models, which can be denoted as {N1, N2, . . . , Ng} and they
will also serve as the input models for the next generation.
Such an iterative model learning and the evolving process will
continue until finally converging, and the optimal output model
(with the lowest loss on validation set) in the last generation
will be selected as the final output model. We will also give
the convergence analysis of BGADAM in Section IV-B and
briefly mention the convergence results in Section V-C.

E. Boosting Strategy based ADAM

Boosting refers to a family of algorithms that can convert
weak learners to strong learners. The core idea of boosting
is to correct the mistakes made by previous learners (models)
and let the current model focus more on the data examples
being misclassified by prior models. So during the training
process of the current model, the training set will be different
from those for prior models. In this section, we will talk more
about the boosting based ADAM learning algorithm adopted
in BGADAM.

1) Motivation: Prior to adding the boosting strategy,
genetic algorithm is only combined with ADAM to rediscover
the best solutions of the models. However, we observe that
genetic algorithm cannot really resolve such a problem com-
pletely. For instance, assume that after training by ADAM,
all input models converge to the same or close local optima
of the loss function, which can be eshibited by Figure 3.
Under such circumstances, the genetic algorithm (crossover

and mutation) can hardly help child models jump out of
local optima because the parent models are too similar on
the learned model variables. Assume the variables of M̄in has
w̄in ∈ U(o, δ) = {w| ‖w − o‖2 ≤ δ},∀in ∈ {1, 2, . . . , g},
where o represents a local optima and δ is a default small
value. Here, U(o, δ) represents a neighborhood region around
o in the variable space. Then for parent model pairs M̄in and
M̄jn located in U(o, δ), we can compute the variables of their
child model Cn as wn[h] = β · w̄in [h] + (1 − β) · w̄jn [h],
where β ∈ {0, 1}, which is exactly the crossover operation in
Section III-C. Then we have

‖wn − o‖2 ≤ ‖wn − w̄in‖2 + ‖w̄in − o‖2
≤ ‖wn − w̄in‖2 + δ

≤ ‖w̄in − w̄jn‖2 + δ

≤ ‖w̄in − o‖2 + ‖w̄jn − o‖2 + δ

≤ 3δ

(8)

and observe that after the crossover, Cn still locates in the
neighborhood region of the local optima o. This phenomenon
is exactly the “local sticking” situation we have mentioned in
the Introduction section. It is true that mutation operation can
assist in jumping out of the local optima. However, according
to Equation (7) the parent models with a relatively small loss
on the validation set will lead to a much lower mutation rate
pm for their child models. Thus mutation cannot solve the local
sticking problem thoroughly. On the other hand, boosting can
solve this problem by creating different training sets for g input
models, which means to let models converge to different local
optima. So there will be more gaps and divergence among
the learned parent models, which can potentially enhance
the advantages of the genetic algorithm and base learners to
achieve better solutions.

2) Boosting Strategy: The overall framework of boosting
based ADAM is shown in Figure 2. To explicitly explain the
boosting strategy, first, we have to introduce the weight z ∈
Rm for all the training instances (here, m denotes the size
of the total training set). For each input model’s training, one
sub training set is sampled subject to the current weight vector
z. In other words, the value of z[i] represents the probability
that ith training instance will be sampled. Initially, z[i] =
1
m ,∀i ∈ {1, 2, · · · ,m}, i.e., all the instances will be sampled
with an equivalent chance. We train the first input model M1

by ADAM with a sub training set sampled from the entire
training set subject to the weight vector z. After this training
process, we can denote the trained first model as M̄1 and
record its prediction results on the entire training set to update
z by

z[i] = z[i]×
{

exp(−αj) if M̄j(X[i, :]) = y[i];
exp(αj) if M̄j(X[i, :]) 6= y[i].

(9)

and
z[i] = z[i]/sum(z) (10)

where M̄j(X[i, :]) denotes the output of model M̄j on instance
X[i, :], αj = 1

2 log(
1−εj
εj

) and y[i] represents the true label of
ith training example. Here, for the first input model M̄1, j = 1
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and ε1 = P(X[i,:],y[i])∼X (M̄1(X(i, :)) 6= y[i]). What need to
be mentioned is that εj < 0.5 should be satisfied because we
deliberately design the weight of training sample X[i, :] having
M̄1(X[i, :]) 6= y[i] to increase, so α1 will be larger than 0.
In this way, sample X[i, :] will be more likely to appear in
next sub training set and the next model will focus more on
correctly classifying it. The Equation (10) is to regulate z as
a probability distribution. When training the next model by
ADAM, another sub training set will be sampled based on
the new weight vector z. By using the weight vector z, the
boosting strategy successfully assigns entire training set with
different distributions (redistribution of the training set).

The boosting strategy can also be regarded as the interaction
among models. By applying boosting we achieve the inter-
action among models through updating the sub training set
for each input model. What is more, this interactive training
essentially makes these g input models diverse. Since different
training sets will lead to various loss functions and gradients,
g input models are more likely to converge to other local
optimal points. This characteristic can give genetic algorithm
more advantages, and that is the core idea we implement the
boosting strategy into the BGADAM.

IV. THEORETIC ANALYSIS

In this section, we will show that the proposed BGADAM
algorithm can guarantee the learning effectiveness; meanwhile,
keep converging when the number of generations increases.

A. Effectiveness Guarantee

According to [6], it has been proven that the error εi of the
trained input model M̄i can be bounded by

2g
g∏
i=1

√
εi(1− εi) ≤ exp(−2

g∑
i=1

γ2i ) (11)

where γi = 0.5 − εi. Let εmin be the error of input model
with the smallest loss, we have

2gεgmin ≤ 2g(εmin(1− εmin))
g
2 ≤ 2g

g∏
i=1

√
εi(1− εi) (12)

Therefore εmin ≤ 1
2 exp(−2

∑g
i=1 γ

2
i /g). The error of the

model we finally select as the output model in the last
generation has a relatively tight upper bound.

B. Convergence Analysis

In our proposed method, we effectively integrate boosting
based ADAM learning algorithm into BGADAM as shown
in Figure 1 and Algorithm 1. For each generation G(k), while
training g input models, we no longer use the same training set
for every model; instead, the boosting based learning algorithm
shown in Figure 2 is added to the training process. For Mi,
the training set Di (denoted by a gray oval) is applied. A
remark to be added here, the training process of the child
models also applies the boosting strategy as indicated in the
algorithm architecture. With the growth of the k, we will show
that the loss of input models can finally converge.

The BGADAM algorithm will also converge in a finite
number of generations, along with the loss of the input
models decreasing continuously. For the ith input model M (k)

i

in the generation G(k), the variables learned by boosting
based ADAM will converge after training, which means

¯loss
(k)
i ≤ loss

(k)
i , where loss

(k)
i and ¯loss

(k)
i denote the

introduced loss of the model Mi and M̄i before and after
training respectively in generation G(k). Since in the kth
generation, the top g models are selected among both the
trained input models and the generated child models as the
output models, the performance of those chosen g models
will not be worse than the input models. In other words,
loss

(k+1)
i ≤ ¯loss

(k)
i ,∀i ∈ {1, 2, . . . , g}. Therefore we have

loss(k+1) =

g∑
i=1

loss
(k+1)
i ≤

g∑
i=1

¯loss
(k)
i ≤

g∑
i=1

loss
(k)
i = loss(k)

(13)

With the training process going on, the loss of models in each
generation will continuously decrease when K goes up, and
the BGADAM will finally converge. The convergence results
will be exhibited in Section V-C.

V. NUMERICAL EXPERIMENTS
To test the effectiveness and advantages of the proposed

BGADAM algorithm, extensive experiments have been con-
ducted on real-world datasets. In this section, we will first
describe the datasets we have used in the experiment, and
then introduce the experimental settings in detail. Finally, we
will exhibit the experimental results together with detailed
descriptions and give the parameter sensitivity analysis.

A. Dataset Description

• ORL Dataset: The ORL [26] dataset consists of face
images of 40 people, each person has ten images. Each
image is in size of 112×92.

• MNIST Dataset: The MNIST [19] dataset includes
60,000 training samples and 10,000 testing samples,
where each sample is a 28×28 image of hand-written
numbers from 0 to 9.

• CIFAR-10 Dataset: The CIFAR-10 [17] dataset consists
of 60000 32×32 color images in 10 classes, with 6000
images per class. There are 50000 training images and
10000 test images. The dataset has no augmentation
operation.



Table II
EXPERIMENT RESULTS ON ALL DATASETS

Comparison Methods
Datasets

ORL-7* MNIST CIFAR-10
Accuracy Loss Accuracy Loss Accuracy Loss

BGADAM 0.967 0.0947 0.9917 0.045 0.6358 1.2346
GADAM 0.975 0.1658 0.9911 0.076 0.6189 2.4067
ADAM 0.958 0.466 0.9905 0.0458 0.6103 1.1742

RMSProp 0.9417 0.2819 0.9877 0.0464 0.5978 1.1807
AdaGrad 0.9333 1.763 0.7988 1.5457 0.3292 1.6892

* ORL-7 denotes 3 images per person as test set, the rest 7 images as training set and 4 of 7 as
validation set.

(a) Loss on test set (b) Accuracy on test set

Figure 4. The impact of g and K

B. Experiment Settings

In this part, we will introduce the experiment settings, which
covers the detailed experiment setup, comparison methods, and
the evaluation metrics.

1) Experiment Setup: We use the convolutional neural
network (CNN) structure models as the base model (input
model). The CNN model we have built is based on the LeNet-
5 [19], which has seven layers. For different datasets, the
CNN models have different settings: for the ORL dataset, we
use two convolutional layers with 16 and 36 feature maps
of 5 × 5 kernels and 2 × 2 max-pooling layers, and a fully
connected layer with 1024 neurons; for the MNIST dataset,
we use LeNet-5 structure in CNN model; for the CIFAR-
10 dataset, we apply three convolutional layers with 64, 128,
256 kernels respectively, and a fully connected layer having
1024 neurons. All the experiments apply Relu [22] activation
function, and 0.5 dropout rate on fully connected layers. For
each training process, the training batch involves 128 samples
and the number of epochs satisfies traversing the entire training
set around 200 times. The initialization of variables is random
numbers sampled from Normal Distribution with 0 means and
0.01 standard variance. For different datasets we use different
g and K in the BGADAM, and we will analyze their influence
later.

2) Comparison Methods and Evaluation Metrics: To show
the advantages of the BGADAM algorithm, we compare it with
the most commonly used optimization algorithms, including
ADAM [15], RMSProp [30], AdaGrad [4] and GADAM [37]
respectively.The input model in our experiments is based on
the CNN structures.

To measure the performance of the comparison methods,
different metrics have been applied in this paper. We calculate
both the accuracy of prediction and test loss achieved by the
models trained with these different optimization algorithms on
the test set.
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Figure 5. Convergence results of comparison algorithms

C. Experimental Results

In this section, firstly, we will exhibit results on all the
datasets, then show the convergence and hyper-parameter
analysis results of the BGADAM algorithm.

1) Results on All Datasets: In Table II, we show the per-
formance of BGADAM algorithm on several datasets compard
with other baseline algorithms. The results of BGADAM in
the table is with g = 5,K = 5. To let the total training
iterations of BGADAM be identical to comparison methods
(e.g., ADAM), we set the training iterations in each generation
of BGADAM as the training iterations of ADAM dividing K.
In this way, the total number of training iterations of BGADAM
is equal to ADAM, meanwhile the overfitting problem can
be potentially inhibited. From the table, we can see that the
BGADAM achieves better overall performance on the test set.
For the accuracy of prediction, BGADAM achieves the best
results on most of the datasets, especially on the CIFAR-10
dataset. The test accuracy achieved by BGADAM is 0.6358,
which is at least 2.5% larger than the accuracy obtained by
ADAM, GADAM and RMSPROP, and the advantages are
much more significant compared with AdaGrad; for the loss
on the test set, the advantages of BGADAM are much more
obvious: the BGADAM’s results are less than GADAM and
ADAM by almost 50 percent on all datasets. Especially for
the ORL and CIFAR-10 datasets, the test loss of BGADAM
is only half of GADAM. The advantages are much more
significant when comparing to other algorithms such as RM-
SPROP and AdaGrad. The overall results demonstrate that our
proposed BGADAM method does improve the performance of
both genetic algorithm and ADAM by adopting the boosting
strategy.

2) Convergence and Hyper-Parameter Analysis: BGADAM
algorithm can converge in a finite number of generations,



Table III
HYPER-PARAMETER ANALYSIS

Different Situations ORL-7
Test loss Test acc

K = 1, g = 10 0.3935 0.975
K = 10, g = 10 0.088 0.9833

which is shown in Figure 5. The result is on the ORL-7 dataset.
Due to the limited space, we will only show the analysis on
the ORL dataset in this part. The hyper-parameters g and K
involved in the training process may affect the convergence
and final results of BGADAM. Thus we also analyze their
influence. We run the experiments with g ∈ {1, 2, . . . , 10}
and K ∈ {1, 2, . . . , 10} on the ORL dataset to illustrate their
influence. The results are shown in Figure 4. We can notice that
the test loss decreases when K increases in terms of different g
numbers, and conversely, the accuracy on the test set increases.
The trend can also be seen in Table III. We also find that the
loss function does not change when K and g increase from
5 to 10, respectively. In other words, the proposed BGADAM
algorithm can converge to an ideal solution in 5 generations
with the input models size of 5 generally. That is also why we
apply the setting of g = 5 and K = 5 when carrying out the
final results of BGADAM. For the experiments on the other
datasets, we also check the influence of K and verify specific
values of K to get the final model.

VI. CONCLUSION
In this paper, we have introduced a new hybrid optimiza-

tion algorithm, namely BGADAM. By combining ADAM,
genetic algorithm, and boosting strategy together, BGADAM
can maximize the advantages of each part by utilizing their
characteristics to efficiently jump out of local optima and pre-
vent the “local sticking” phenomenon, then further converge
to better solutions. We have carried out extensive experiments
on real-world datasets, and the results show that our proposed
BGADAM algorithm outperforms previous optimization meth-
ods, especially for training deep neural networks.
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